Skip to main content
Log in

Algebraic Geometry and Computer Vision: Polynomial Systems, Real and Complex Roots

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We review the different techniques known for doing exact computations on polynomial systems. Some are based on the use of Gröbner bases and linear algebra, others on the more classical resultants and its modern counterparts. Many theoretical examples of the use of these techniques are given. Furthermore, a full set of examples of applications in the domain of artificial vision, where many constraints boil down to polynomial systems, are presented. Emphasis is also put on very recent methods for determining the number of (isolated) real and complex roots of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Adams and P. Lousraunau, An Introduction to Gröbner Bases, volume 3 of Graduate Studies in Mathematics, Oxford University Press, 1994.

  2. D. Arnon, Computational Methods in Real Algebraic Geometry, Academic Press, 1989.

  3. D. Arnon, “Geometric reasoning with logic and algebra,” in Geometric Reasoning, D. Kapur and J. Mundy (Eds.), MIT Press, 1989, pp. 37–60. Proceedings of the International Workshop on Geometric Reasoning.

  4. M. Barry, D. Cyrluk, D. Kapur, J. Mundy, and V.D. Nguyen, “A multi-level geometric reasoning system for vision,” Artificial Intelligence, Vol. 37, pp. 291–332, 1988.

    Google Scholar 

  5. J. Barwise, “An introduction to first-order logic,” in Handbook of Mathematical Logic, J. Barwise (Ed.), North Holland, 1977, pp. 5–46.

  6. D. Bayer and D. Mumford, “What can be computed in algebraic geometry?” in Computational Algebraic Geometry and Commutative Algebra (Cortona, 1991), Sympos. Math., XXXIV, Cambridge University Press, 1993, pp. 1–48.

  7. D. Bayer and M. Stillman, “Macaulay: A system for computation in algebraic geometry and commutative algebra, 1992. Computer software available via anonymous ftp from zariski.harvard.edu.

  8. M. Ben-Or, D. Kozen, and J. Reif, “The complexity of elementary algebra and geometry,” Journal of Computer and System Sciences, Vol. 32, No. 2, pp. 251–264, 1986.

    Google Scholar 

  9. R. Benedetti, F. Loeser, and J.-J. Risler, “Two bounds for the number of connected components of a real algebraic set,” in Real Analytic and Algebraic Geometry, volume 1420 of Lecture Notes in Mathematics, Springer-Verlag, 1990, pp. 22–35.

  10. R. Benedetti and J.-J. Risler, Real Algebraic and Semi-Algebraic Sets, Hermann, 1990.

  11. D.N. Bernstein, “The number of roots of a system of equations,” Functional Analysis and Applications, Vol. 9, No. 2, pp. 183–185, 1975.

    Google Scholar 

  12. D. Bini and V. Pan, Numerical and Algebraic Computations with Matrices and Polynomials, Birkhäuser: Boston, 1992.

    Google Scholar 

  13. J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, volume 12 of Ergebnisse der Mathematik, Springer-Verlag, 1987.

  14. B. Buchberger, “Gröbner bases: An algorithmic method in polynomial ideal theory,” in Multidimensional Systems Theory, N.K. Bose (Ed.), Reidel: Dordrecht-Boston-Lancaster, 1985, pp. 184–232.

    Google Scholar 

  15. B. Buchberger, “Applications of Gröbner bases in non-linear computational geometry,” in Geometric Reasoning, D. Kapur and J. Mundy (Eds.), The MIT Press, 1989, pp. 415–447.

  16. B. Buchberger, G.E. Collins, and R. Loos, Computer Algebra- Symbolic and Algebraic Computation, Springer-Verlag, 1983.

  17. J. Canny and I. Emiris, “An efficient algorithm for the sparse mixed resultant,” in Proceedings of AAECC (International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes), Puerto Rico, volume 673 of Lecture Notes in Computer Science, Springer-Verlag, 1993, pp. 89–104.

  18. J.F. Canny, The Complexity of Robot Motion Planning, The MIT Press, 1988.

  19. B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, “A singly exponential stratification scheme for real semi-algebraic varieties and its applications,” Theoretical Computer Science, Vol. 84, pp. 77–105, 1991.

    Google Scholar 

  20. G.E. Collins, “Quantifier elimination for real closed fields by cylindrical algebraic decomposition,” in Proceedings of the Second GI Conference on Automata and Formal Languages, volume 33 of Lecture Notes in Computer Science, Springer-Verlag, 1975, pp. 134–163.

  21. M. Coste and M.-F. Roy, “Thom' lemma, the coding of real algebraic numbers and the computation of the topology of semialgebraic sets,” Journal of Symbolic Computation, Vol. 5, pp. 121–129, 1988.

    Google Scholar 

  22. D. Cox, J. Little, and D. O'hea, Ideals, Varieties and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics, Springer-Verlag, 1992.

  23. F. Cucker and M.-F. Roy, IF, a package of Maple programs for computing with real algebraic numbers and working with real solutions of equations and inequalities, 1989. Version 0.1.

  24. A.L. Dixon, “The eliminant of three quantics in two independent variables,” Proceedings of the London Mathematical Society, Vol. 6, pp. 49–69, 1908.

    Google Scholar 

  25. I. Emiris and J. Canny, “Efficient incremental algorithms for the sparse resultant and the mixed volume,” Journal of Symbolic Computation, Vol. 20, No. 2, pp. 117–149, 1995.

    Google Scholar 

  26. I.Z. Emiris, “Sparse elimination and applications in kinematics,” Ph.D. thesis, University of California at Berkeley, 1994.

  27. J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora, “Efficient computation of zero-dimensional Gröbner bases by change of ordering,” Journal of Symbolic Computation, Vol. 16, No. 4, pp. 329–344, 1993.

    Google Scholar 

  28. W. Fulton, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, 1984.

  29. K. Gaterman, The moregroebner package, 1996. http://www.zib.de/»bzfgatte/moregroebner.html.

  30. I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky, Discriminants and Resultants, Birkhäuser, 1994.

  31. L. González-Vega, “Some examples of problem solving by using the symbolic viewpoint when dealing with polynomial systems of equations,” in Computer Algebra in Science and Engineering, J. Fleischer, J. Grabmeier, F.W. Hehl, and W. Küchlin (Eds.), World Scientific Publishing, 1995, pp. 102–116.

  32. L. González-Vega, “Symbolic recipes for polynomial system solving: Real solutions,” Lecture notes of the tutorial presented at ISSAC (International Symposium on Symbolic and Algebraic Computation), Zurich, Switzerland, 1996.

  33. P. Gordan, Vorlesungen über Invariantentheorie. Verlag von Teubner: Leipzig, pp. 1885–1887.

  34. H.-G. Gräbe, “About the polynomial system solve facility of Axiom, Macsyma, Maple, Mathematica, MuPAD, and Reduce,” in Computer Algebra Systems: A Practical Guide, M. Wester (Ed.), John Wiley, 1998, to appear.

  35. J.H. Grace and A. Young, The Algebra of Invariants, Cambridge University Press, 1903.

  36. A. Heck, “A bird'-eye view of Gröbner bases,” in Proceedings of 5th AIHENP (International Workshop on New Computing Techniques in Physics Research), 1996.

  37. G. Helzer, “Gröbner bases,” Mathematical Journal, Vol. 5, No. 1, pp. 67–73, 1995.

    Google Scholar 

  38. C. Hermite, “Remarques sur le théorème de Sturm,” Comptes-Rendus de l'Académie des Sciences de Paris, Vol. 36, pp. 52–54, 1853.

    Google Scholar 

  39. D. Hilbert, Theory of Algebraic Invariants, Cambridge Mathematica Library, Cambridge University Press, 1890.

  40. D. Hilbert, “Über die theorie der algebraischen formen,” Math. Annalen, Vol. 36, pp. 473–534, 1890.

    Google Scholar 

  41. C. Hoffmann, Geometric and Solid Modeling: An Introduction, Morgan Kaufmann Publishers Inc., 1989.

  42. B. Huber and B. Sturmfels, “A polyhedral method for solving sparse polynomial systems,” Math. Comp., Vol. 64, pp. 1541–1555, 1995.

    Google Scholar 

  43. B. Huber and B. Sturmfels, “Bernstein' theorem in affine space,” Discrete and Computational Geometry, Vol. 17, pp. 137–141, 1997.

    Google Scholar 

  44. I. Itenberg and M.-F. Roy, “Multivariate Descartes' rule,” Beiträge zur Algebra und Geometrie, Vol. 37, No. 2, pp. 337–346, 1996.

    Google Scholar 

  45. A.K. Jain and P.J. Flynn (Eds.), Three-Dimensional Object Recognition Systems, volume 1 of Advances in Image Communication, Elsevier Press, 1993.

  46. M. Jirstrand, “Cylindrical algebraic decomposition-An introduction,” Technical Report LiTH-ISY-R-1807, Department of Electrical Engineering, Linköping University, 1995.

  47. J.-P. Jouanolou, “Le formalisme du résultant,” Advances in Mathematics, Vol. 98, pp. 117–263, 1991.

    Google Scholar 

  48. M. Kac, “On the average number of real roots of a random algebraic equation,” Bulletin of the American Mathematical Society, Vol. 49, pp. 314–320, 1943.

    Google Scholar 

  49. D. Kapur and Y.N. Lakshman, “Elimination methods: An introduction,” in Symbolic and Numerical Computation for Artificial Intelligence, B.R. Donald, D. Kapur, and J.L. Mundy (Eds.), Academic Press, 1992, pp. 45–89.

  50. A.G. Khovanskii, “Fewnomials,” in Translations of Mathematical Monographs, Vol. 88, American Mathematical Society, 1991.

  51. F. Klein, “Eine neue Relation zwischen den Singularitäten einer algebraischen Curve,” Math. Annalen, Vol. 10, pp. 199–209, 1876.

    Google Scholar 

  52. J.J. Koenderink and A.J. van Doorn, “The internal representation of solid shape with respect to vision,” Biological Cybernetics, Vol. 32, pp. 211–216, 1979.

    Google Scholar 

  53. E. Kostlan, “On the distribution of the roots of random polynomials,” in From Topology to Computation, M. Hirsch, J. Marsden, and M. Shub (Eds.), Springer-Verlag, 1991. Proceedings of the Smalefest.

  54. D. Lazard, “Résolution des systèmes d'équations algébriques,” Theoretical Computer Science, Vol. 15, pp. 77–110, 1981.

    Google Scholar 

  55. T. Li and X.Wang, “The BKK root count in ℂ,” Mathematics of Computation, Vol. 65, No. 216, pp. 1477–1484, 1996.

    Google Scholar 

  56. G. Lyubeznik, “Minimal resultant systems,” Journal of Algebra, Vol. 177, pp. 612–616, 1995.

    Google Scholar 

  57. F.S. Macaulay, “Some formulae in elimination,” Proceedings of the London Mathematical Society, 1902, Vol. 1, No. 33, pp. 3–27.

    Google Scholar 

  58. F.S. Macaulay, The Algebraic Theory of Modular Systems, volume 8 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1916.

  59. D. Manocha and J.F. Canny, “The implicit representation of rational parametric surfaces,” Journal of Symbolic Computation, Vol. 13, pp. 485–510, 1992.

    Google Scholar 

  60. M. Mignotte, “Some useful bounds,” Computer Algebra: Symbolic and Algebraic Computation, pp. 259–263, 1982.

  61. J. Milnor, “On the Betti numbers of real varieties,” in Proceedings of the American Mathematical Society, 1964, Vol. 15, pp. 275–280.

    Google Scholar 

  62. B. Mishra, Algorithmic Algebra, Springer-Verlag, 1993.

  63. A.P. Morgan, Solving Polynomial Systems using Continuation for Engineering and Scientific Problems, Prentice Hall: Englewood Cliffs, New Jersey, 1987.

    Google Scholar 

  64. B. Mourrain, “An introduction to linear algebra methods for solving polynomial equations,” in Proceedings of Hellenic European Research on Computer Mathematics and its Applications, 1998.

  65. B. Mourrain and N. Stolfi, “Computational symbolic geometry,” Invariant Methods in Discrete and Computational Geometry, Kluwer Academic Publishers, 1994, pp. 107–139.

  66. J.L. Mundy and A. Zisserman (Eds.), Geometric Invariance in Computer Vision, MIT Press, 1992.

  67. V.Y. Pan, J.H. Reif, and S.R. Tate, “The power of combining the techniques of algebraic and numerical computing: Improved approximate multipoint polynomial evaluation and improved multipole algorithms,” in Proceedings of FOCS'92 (IEEE Symposium on Foundations of Computer Science), 1992, pp. 703–713.

  68. P. Pedersen, M.-F. Roy, and A. Szpirglas, “Counting real zeros in the multivariate case,” in Proceedings of MEGA'92 (International Symposium on Effective Methods in Algebraic Geometry), F. Eyssette and A. Galligo (Eds.), Progress in Mathematics, Nice, France, 1992, pp. 203–224, Birkhäuser.

    Google Scholar 

  69. S. Petitjean, “The enumerative geometry of projective algebraic surfaces and the complexity of aspect graphs,” International Journal of Computer Vision, Vol. 19, No. 3, pp. 1–27, 1996.

    Google Scholar 

  70. S. Petitjean, J. Rieger, and D. Forsyth, “Recognizing algebraic surfaces from aspects,” in Algebraic Surfaces in Computer Vision, J. Ponce (Ed.), Springer-Verlag, 1997. Series in Information Sciences, to appear.

  71. A. Rege, “A complete and practical algorithm for geometric theorem proving,” in Proceedings of 11th SCG (ACM Annual Symposium on Computational Geometry), Vancouver, Canada, 1995, pp. 277–286.

  72. A. Rege, “A toolkit for algebra and geometry,” Ph.D. thesis, Computer Science Department, University of California at Berkeley, 1996.

    Google Scholar 

  73. J. Renegar, “On the computational complexity and geometry of the first-order theory of the reals I, II and III,” Journal of Symbolic Computation, Vol. 13, No. 3, pp. 255–300, 301–328, 329–330, 1992.

    Google Scholar 

  74. J.H. Rieger, “Computing view graphs of algebraic surfaces,” Journal of Symbolic Computation, Vol. 16, pp. 259–272, 1993.

    Google Scholar 

  75. J.H. Rieger, “Notes on the complexity of exact view graph algorithms for piecewise-smooth algebraic surfaces,” Discrete and Computational Geometry, Vol. 20, pp. 205–229, 1998.

    Google Scholar 

  76. J.H. Rieger, “On the complexity and computation of view graphs of piecewise-smooth algebraic surfaces,” Philosophical Transactions of the Royal Society of London, Series A,Vol. 354, No. 1714, pp. 1899–1940, 1996.

    Google Scholar 

  77. M. Rojas, “A convex geometric approach to counting the roots of a polynomial system,” Theoretical Computer Science, Vol. 133, No. 1, pp. 105–140, 1994.

    Google Scholar 

  78. M. Rojas, “On the average number of real roots of certain random sparse polynomial systems,” in The Mathematics of Numerical Analysis, Jim Renegar, Mike Shub, and Steve Smale (Eds.), volume 32 of Lectures in Applied Mathematics, American Mathematical Society, 1996, pp. 689–699.

  79. M. Rojas, “Toric generalized characteristic polynomials,” Mathematical Sciences Research Institute Preprint # 1997–017.

  80. M. Rojas, “Toric intersection theory for affine root counting,” Journal of Pure and Applied Algebra, Vol. 136, No. 1, 1999.

  81. M. Rojas and X. Wang, “Counting affine roots via pointed Newton polytopes,” Journal of Complexity, Vol. 12, pp. 116–133, 1996.

    Google Scholar 

  82. F. Ronga, “Points d'inflexion sur les courbes réelles: un travail de Felix Klein `a la lumière de la théorie des singularités d'applications,” Gazette des mathématiciens, No. 74, 1997.

  83. F. Ronga, “The number of conics tangent to 5 given conics: The real case,” Revista Matemática de la Universidad Complutense de Madrid, Vol. 10, No. 2, pp. 391–421, 1997.

    Google Scholar 

  84. F. Ronga and T. Vust, “Stewart platforms without computer?” in Proceedings of the 1992 International Conference on Real Analytic and Algebraic Geometry, Walter de Gruyter (Ed.), Trento, 1995, pp. 196–212.

  85. F. Rouillier, “Algorithmes efficaces pour l'étude des zéros réels des systèmes polynomiaux,” Ph.D. thesis, Université de Rennes I, 1996.

  86. M.-F. Roy, L. Gonzalez, H. Lombardi, and T. Recio, “Sturm-Habicht, determinants, and real roots of univariate polynomials,” in Quantifier Elimination and Cylindrical Algebraic Decomposition, B. Caviness and J. Johnson (Eds.), Springer-Verlag, 1994.

  87. M.-F. Roy and T. van Effelterre, “Aspect graphs of bodies of revolution with algorithms of real algebraic geometry,” Progress in Mathematics, 1996, Vol. 143. Proceedings of MEGA'94 (International Symposium on Effective Methods in Algebraic Geometry), Santander, Spain, April 1994.

  88. A. Salden, “Dynamic scale-space paradigms,” Ph.D. thesis, Utrecht University, The Netherlands, 1996.

    Google Scholar 

  89. T.W. Sederberg and F. Chen, “Implicitization using moving curves and surfaces,” Computer Graphics Proceedings, Annual Conference Series, Vol. 29, pp. 301–308, 1995. Proceedings of SIGGRAPH'95.

    Google Scholar 

  90. M. Sharir and P.K. Agarwal, Davenport-Schinzel Sequences and their Geometric Applications, Cambridge University Press, 1995.

  91. M. Shub and S. Smale, “Complexity of Bezout' theorem I: Geometric aspects,” Journal of the American Mathematical Society, Vol. 6, pp. 459–501, 1993.

    Google Scholar 

  92. M. Shub and S. Smale, “Complexity of Bezout' theorem II: Volumes and probabilities,” in Computational Algebraic Geometry, F. Eyssette and A. Galligo (Eds.), volume 109 of Progress in Mathematics, Birkhäuser, 1993, pp. 267–285.

  93. M. Shub and S. Smale, “Complexity of Bezout' theorem V: Polynomial time,” Theoretical Computer Science, Vol. 133, pp. 141–164, 1994.

    Google Scholar 

  94. M. Shub and S. Smale, “Complexity of Bezout' theorem IV: Probability of success, extensions,” SIAM Journal of Numerical Analysis, Vol. 33, No. 1, pp. 128–148, 1996.

    Google Scholar 

  95. F. Sottile, “Enumerative geometry for real varieties,” in Algebraic Geometry, Santa Cruz, 1995, János Kollár (Ed.), Proceedings and Symposia in Pure Mathematics, Vol. 61, No. 1, AMS, pp. 435–447, 1997.

  96. F. Sottile, “Enumerative geometry for the real Grassmannian of lines in projective space,” Duke Math. J., Vol. 87, No. 1, pp. 59–85, 1997.

    Google Scholar 

  97. F. Sottile, “Real enumerative geometry and effective algebraic equivalence,” in Proceedings of 4th MEGA (International Symposium on Effective Methods in Algebraic Geometry), Eindhoven, The Netherlands, 1996.

    Google Scholar 

  98. P. Stiller, “An introduction to the theory of resultants,” Technical Report ISC-96–02–MATH, Texas A & M University, Institute for Scientific Computation, 1996.

  99. P. Stiller, “Sparse resultants,” Technical Report ISC-96–01–MATH, Texas A & M University, Institute for Scientific Computation, 1996.

  100. P. Stiller, C. Asmuth, and C. Wan, “Invariants, indexing, and single view recognition,” in Proceedings of IUW (Image Understanding Workshop), 1994, pp. 1423–1428.

  101. C. Sturm, “Mémoire sur la résolution des équations numériques,” Inst. France Sc. Math. Phys., Vol. 6, 1835.

  102. B. Sturmfels, “On the number of real roots of a sparse polynomial system,” in Hamiltonian and Gradient Flows: Algorithms and Control, A. Bloch (Ed.), American Mathematical Society, 1991, Vol. 3, pp. 137–143.

  103. B. Sturmfels, “Introduction to resultants,” in Proceedings of the AMSshort course on Applications of Computational Geometry, San Diego, 1997.

  104. B. Sturmfels and A. Zelevinsky, “Multigraded resultants of Sylvester type,” Journal of Algebra, Vol. 163, No. 1, pp. 115–127, 1994.

    Google Scholar 

  105. J.J. Sylvester, “On a general method of determining by mere inspection the derivations from two equations of any degree,” Philosophical Magazine, Vol. 16, pp. 132–135, 1840.

    Google Scholar 

  106. A. Tarski, A Decision Method for Elementary Algebra and Geometry, University of California Press, 1951.

  107. B.L. van derWaerden, Modern Algebra, 5th edition, Frederick Ungar Publishing Co., 1970.

  108. T. van Effelterre, “Calcul exact du graphe d'aspect de solides de révolution,” Ph.D. thesis, Université de Rennes I, 1995.

  109. L. Velho and J. Gomes, “Approximate conversion from parametric to implicit surfaces,” in Proceedings of First International Workshop on Implicit Surfaces, B. Wyvill and M.-P. Gascuel (Eds.), Grenoble, France, April 1995, pp. 77–96.

  110. V. Weispfenning, “Solving parametric polynomial equations and inequalities by symbolic algorithms,” in Computer Algebra in Science and Engineering, J. Fleischer, J. Grabmeier, F.W. Hehl, and W. Küchlin (Eds.), World Scientific Publishing, 1995.

  111. R. Weitzenböck, Invariantentheorie, P. Noordhoff: Groningen, 1923.

    Google Scholar 

  112. M. Werman and A. Shashua, “The study of 3D-from-2D using elimination,” in Proceedings of 5th ICCV (International Conference on Computer Vision), Cambridge, Massachusetts, 1995, pp. 473–479.

  113. J. Weyman and A. Zelevinsky, “Determinantal formulas for multigraded resultants,” Journal of Algebraic Geometry,Vol. 3, pp. 569–597, 1994.

    Google Scholar 

  114. W.-T. Wu, “On the decision problem and the mechanization of theorem-proving in elementary geometry,” in Automated Theorem Proving: After 25 Years, W. Bledsoe and D. Loveland (Eds.), American Mathematical Society, 1983, pp. 213–234. Contemporary Mathematics 29.

  115. B. Wyvill and M.-P. Gascuel (Eds.), in Proceedings of Implicit Surfaces'95 (First International Workshop on Implicit Surfaces), Grenoble, France, April 1995.

  116. H.G. Zeuthen, “Abzählende Methoden,” in Enzyklopädie der MathematischenWissenschaften, Leipzig, 1903–1915, pp. 43–87. dritter Band, zweiter Teil, erste Hälfte.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petitjean, S. Algebraic Geometry and Computer Vision: Polynomial Systems, Real and Complex Roots. Journal of Mathematical Imaging and Vision 10, 191–220 (1999). https://doi.org/10.1023/A:1008348724781

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008348724781

Navigation