Skip to main content
Log in

Categorically Algebraic Foundations for Homotopical Algebra

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We investigate a structure for an abstract cylinder endofunctor I whichproduces a good basis for homotopical algebra. It essentially consists ofthe usual operations (faces, degeneracies, connections, symmetries, verticalcomposition) together with a transformation w: I2 → I2, whichwe call lens collapse after its realisation in the standard topologicalcase. This structure, if somewhat heavy, has the interest of being“categorically algebraic”, i.e., based on operations onfunctors. Consequently, it can be naturally lifted from a category A to itscategories of diagrams AS and its slice categories A\X,A/X.Further, the dual structure, based on a cocylinder (or path) endofunctor Pcan be lifted to the category of A-valued sheaves on a site, wheneverthe path functor P preserves limits, and to the category Mon A of internalmonoids, with respect to any monoidal structure of A consistent with P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baues, H. J.: Algebraic Homotopy, Cambridge Univ. Press, 1989.

  2. Brown, K. S.: Abstract homotopy theory and generalised sheaf cohomology, Trans. Amer. Math. Soc. 186 (1973), 419–458.

    Google Scholar 

  3. Brown, R. and Higgins, P. J.: On the algebra of cubes, J. Pure Appl. Algebra 21 (1981), 233–260.

    Google Scholar 

  4. Brown, R. and Higgins, P. J.: Colimit theorems for relative homotopy groups, J. Pure Appl. Algebra 22 (1981), 11–41.

    Google Scholar 

  5. Brown, R. and Higgins, P. J.: Tensor products and homotopies for ω-groupoids and crossed complexes, J. Pure Appl. Algebra 47 (1987), 1–33.

    Google Scholar 

  6. Brown, R. and Loday, J. L.: Van Kampen theorems for diagrams of spaces, Topology 26 (1987), 311–335.

    Google Scholar 

  7. Dror Farjoun, E.: Homotopy and homology of diagrams of spaces, in Algebraic Topology, Proceedings, Seattle 1985, Lecture Notes in Math. 1286, Springer-Verlag, 1987, pp. 93–134.

  8. Grandis, M.: On the categorical foundations of homological and homotopical algebra, Cahiers Top. Géom. Diff. Catég. 33 (1992), 135–175.

    Google Scholar 

  9. Grandis, M.: Homotopical algebra in homotopical categories, Appl. Categorical Structures 2 (1994), 351–406.

    Google Scholar 

  10. Grandis, M.: Cubical monads and their symmetries, in Proceedings of the 11th International Conference on Topology, Trieste 1993, Rend. Ist. Mat. Univ. Trieste 25 (1993), pp. 223–268.

    Google Scholar 

  11. Grandis, M.: Cubical homotopical algebra and cochain algebras, Ann. Mat. Pura Appl. 170 (1996), 147–186.

    Google Scholar 

  12. Grandis, M.: Homotopical algebra and triangulated categories, Math. Proc. Cambridge Philos. Soc. 118 (1995), 259–295.

    Google Scholar 

  13. Gray, J. W.: Sheaves with values in a category, Topology 3 (1965), 1–18.

    Google Scholar 

  14. Hardie, K. A. and Kamps, K. H.: Homotopy over B and under A, Cahiers Top. Géom. Diff. Catég. 28 (1987), 183–195.

    Google Scholar 

  15. Hardie, K. A. and Kamps, K. H.: Track homotopy over a fixed space, Glasnik Mat. 24 (1989), 161–179.

    Google Scholar 

  16. Hardie, K. A. and Kamps, K. H.: Variations on a theme of Dold, Can. Math. Soc. Conf. Proc. 13 (1992), 201–209.

    Google Scholar 

  17. Hardie, K. A., Kamps, K. H., and Porter, T.: The coherent homotopy category over a fixed space is a category of fractions, Topology Appl. 40 (1991), 265–274.

    Google Scholar 

  18. Heller, A.: Stable homotopy categories, Bull. Amer. Math. Soc. 74 (1968), 28–63.

    Google Scholar 

  19. James, I. M.: Ex homotopy theory I, Ill. J. Math. 15 (1971), 329–345.

    Google Scholar 

  20. Kamps, K. H.: Faserungen und Cofaserungen in Kategorien mit Homotopiesystem, Dissertation, Saarbrücken, 1968.

  21. Kamps, K. H.: Über einige formale Eigenschaften von Faserungen und h-Faserungen, Manuscripta Math. 3 (1970), 237–255.

    Google Scholar 

  22. Kamps, K. H.: Kan-Bedingungen und abstrakte Homotopietheorie, Math. Z. 124 (1972), 215–236.

    Google Scholar 

  23. Kan, D. M.: Abstract homotopy II, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 255–258.

    Google Scholar 

  24. MacLane, S.: Categorical algebra, Bull. Amer. Math. Soc. 71 (1965), 40–106.

    Google Scholar 

  25. MacLane, S.: Categories for the Working Mathematician, Springer-Verlag, 1971.

  26. MacLane, S. and Moerdijk, I.: Sheaves in Geometry and Logic, Springer-Verlag, 1992.

  27. Moerdijk, I. and Svensson, J. A.: Algebraic classification of equivariant homotopy 2-types, I, J. Pure Appl. Algebra 89 (1993), 187–216.

    Google Scholar 

  28. Puppe, D.: Homotopiemengen und ihre induzierten Abbildungen, I, Math. Z. 69 (1958), 299–344.

    Google Scholar 

  29. Quillen, D. G.: Homotopical Algebra, Lecture Notes in Math. 43, Springer-Verlag, 1967.

  30. Spencer, C. B. and Wong, Y. L.: Pullback and pushout squares in a special double category with connection, Cahiers Top. Géom. Diff. Catég. 24 (1983), 161–192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandis, M. Categorically Algebraic Foundations for Homotopical Algebra. Applied Categorical Structures 5, 363–413 (1997). https://doi.org/10.1023/A:1008620005400

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008620005400

Navigation