Skip to main content
Log in

Adaptive Antennas for Microcellular and Mixed Cell Environments with DS-CDMA

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Adaptive antenna technology is now regarded as one of the key system components in future generation cellular networks. This paper considers the performance of a DS-CDMA system which employs adaptive antennas at the base station sites of both microcell and mixed micro/umbrella cell operational environments. A microcellular ray tracing propagation tool has been employed in order to ascertain site specific propagation data. Results for a typical small cell environment highlight both the propagation characteristics and the behaviour of the adaptive antenna, as well as the sensitivity of the system upon parameters such as the mutual coupling effect. This work does not assume idealised propagation conditions or antenna radiation patterns for the small cell analysis.

In summary, the results indicate that microcellular base stations employing adaptive antenna signal processing can offer a significant capacity enhancement and improved channel characteristics when compared with their omnidirectional counterparts. In addition, it is shown that umbrella cells overlaying microcells within the same RF bandwidth allocation, do not impact upon system capacity providing that adaptive antenna technology is employed at the umbrella cell site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Gilhousen, I. Jacobs, R. Padovani, A. Viterbi, L. Weaver, C. Wheatley, “On the Capacity of a Cellular CDMA System”, IEEE Trans. Veh. Technol., Vol. 40, pp. 303–311, 1991.

    Google Scholar 

  2. S.C. Swales, J.P. Aldis, T. Busby, S.K. Barton, M.A. Beach, “The U.K. LINK Personal Communications Programme”, RACE Mobile Telecommunications Summit, Cascais, Portugal, 1995, pp. 447–451.

  3. T. Stefansson, G. Lyman, A. Cloke, A. Prentice, “CODIT Real-Time Testbed”, RACE Mobile Telecommunications Summit, Cascais, Portugal, 1995, pp. 451–457.

  4. J.S. Winters, “Optimum Combining in Digital Mobile Radio with Co-channel Interference”, IEEE Trans. Veh. Technol., Vol. VT-33, pp. 144–155, 1984.

    Google Scholar 

  5. A.F. Naguib and A. Paulraj, “Performance of CDMA Cellular Networks with Base Station Antenna Arrays”, Lecture Notes in Computer Science, No. 783, pp. 87–100, Springer-Verlang 1994.

  6. G.V. Tsoulos, M.A. Beach, S.C. Swales, “DSCDMA Capacity Enhancement with Adaptive Antennas”, Electron. Lett., Vol. 31, pp. 1319–1320, 1995.

    Google Scholar 

  7. G.V. Tsoulos, M.A. Beach, P. Eggers, “Technology in Smart antennas for UNiversal Advanced Mobile Infrastructure (TSUNAMI) – An Overview”, presented at the European Cooperation in the field of Scientific and Technical Research, COST 231, TD (95) 116, Pozan, Poland, 13–15 Sept., 1995.

  8. G.V. Tsoulos, M.A. Beach, “Sensitivity Study for the Capacity Enhancement of DCS1800 with Adaptive Multibeam Antennas”, Electron. Lett., Vol. 32, pp. 1745–1746, 1996.

    Google Scholar 

  9. J. Kennedy and M. Sullivan, “Direction Finding and ‘smart Antennas’ Using Software Radio Architectures”, IEEE Commun. Mag., Vol. 33, pp. 62–68, 1995.

    Google Scholar 

  10. S.C. Swales, M.A. Beach, and J.P. McGeehan, “The Performance Enhancement of Multi-Beam Adaptive Base Station Antennas for Cellular Land Mobile Radio Systems”, IEEE Trans. Veh. Technol., Vol. 39, pp. 56–67, 1990.

    Google Scholar 

  11. R. Kohno, H. Imai, M. Hatori, S. Pasupathy, “Combination of an Adaptive Array Antenna and a Canceller of Interference for Direct Sequence Spread Spectrum Multiple Access”, IEEE J. Select. Areas Commun., Vol. SAC-8, No.4, pp. 675–681, 1990.

    Google Scholar 

  12. Y. Ogawa, Y. Nagashima, K. Itoh, “An Adaptive Antenna System for High Speed Digital Mobile Communications”, IEEE Trans. Commun., Vol. E75-B, No.5, pp. 413–421, 1992.

    Google Scholar 

  13. G.E. Athanasiadou, A.R. Nix, J.P. McGeehan, “A Ray Tracing Algorithm for Microcellular Wideband Modelling”, in Proc. 1995 IEEE Veh. Technol. Conf., Chicago, 1995, pp. 261–265.

  14. M.C. Lawton, J.P. McGeehan, “The Application of a Deterministic Ray Launching Algorithm for the Prediction of Radio Channel Characteristics in Small Cell Environments”, IEEE Trans. Veh. Technol., Vol. 43, pp. 955–969, 1994.

    Google Scholar 

  15. K.R. Schaubach, N.J. Davis IV, “Microcellular RadioChannel Propagation Prediction”, IEEE Antenn. Propagat. Mag., pp. 25–34, 1994.

  16. R.A. Valenzuela, “A Ray Tracing Approach to Predicting Indoor Wireless Transmission”, in Proc. 1993 IEEE Veh. Technol. Conf., New Jersey, 1993, pp. 261–265.

  17. S.Y. Seidel, T.S. Rappaport, “Site Specific Propagation Prediction for Wireless In-Building Personal Communication System Design”, IEEE Trans. Veh. Technol., Vol. 43, pp. 879–891, 1994.

    Google Scholar 

  18. M.J. Mehler, “The microcell propagation challenge”, IEE Colloquium on Microcellular Propagation Modelling, 1992/130, 1992

  19. B. Gudmundson, J. Skold, J.K. Ugland “A comparison of CDMA and TDMA Systems”, in Proc. 1992 IEEE eh. Technol. Conf., Denver, 1992, pp. 732–735.

  20. A.J. Viterbi, CDMA Principles of Spread Spectrum Communication, Addison-Wesley, 1995.

  21. Qualcomm Inc., “An Overview of the Application of Code Division Multiple Access (CDMA) to Digital Cellular Systems and Personal Cellular Networks”, EX60–10010, 1992.

  22. J. Liberti, T. Rappaport, “Analytical Results for Capacity Improvements in CDMA”, IEEE Trans. Veh. Technol., Vol. 43, pp. 680–690, 1994.

    Google Scholar 

  23. G.E. Athanasiadou, A. Nix, J.P. McGeehan, “Investigation into the Accuracy and Sensitivity of a Ray Tracing Algorithm for Microcellular Wideband Propagation Modelling”, in Proc. 1997 IEEE Veh. Technol. Conf., Phoenix, 1997.

  24. G.V. Tsoulos, M.A. Beach, S.C. Swales, “Adaptive Antennas for Third Generation DS-CDMA Cellular Systems”, in Proc. 1995 IEEE Veh. Technol. Conf., Chicago, 1995, pp. 45–49.

  25. J.S. Winters, “Signal Acquisition and Tracking with Adaptive Arrays in Digital Mobile Radio System IS-54 with Flat Fading”, IEEE Trans. Veh. Technol., Vol. VT-42, pp. 377–384, 1993.

    Google Scholar 

  26. I. Gupta, A. Ksienski, “Effect of Mutual Coupling on the Performance of Adaptive Arrays”, IEEE Trans. Antenn. Propagat., Vol. AP-31, No.5, pp. 785–791, 1983.

    Google Scholar 

  27. B. Friendlander, A. Weiss, “Direction Finding in the Presence of Mutual Coupling”, IEEE Trans. Antenn. Propagat., Vol. AP-39, No.3, pp. 273–284, 1991.

    Google Scholar 

  28. M.B. Pursley, “Performance Evaluation for Phase-Coded Spread Spectrum Multiple Access Communications with Random Signature Sequences”, IEEE Trans. Commun., Vol. COM-25, 1977.

  29. Hakan Eriksson et al, “Multiple Access Options for Cellular Based Personal Communications”, in Proc. 1993 IEEE Veh. Technol. Conf., New Jersey, 1993, pp. 261–265.

  30. S. Chia, “The Universal Mobile Telecommunications System”, IEEE Commun. Mag., Vol. 30, pp. 54–62, 1992.

    Google Scholar 

  31. UMTS Task Force Report, “The Road to UMTS”, Brussels, 1996.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsoulos, G., Athanasiadou, G., Beach, M. et al. Adaptive Antennas for Microcellular and Mixed Cell Environments with DS-CDMA. Wireless Personal Communications 7, 147–169 (1998). https://doi.org/10.1023/A:1008827211524

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008827211524

Navigation