Skip to main content
Log in

How Neural Interactions Form Neural Responses in the Salamander Retina

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

A wide range of experimental data characterizing propertiesof individual salamander retinal cells and synaptic interactionsare integrated to form a quantitative computational model of visual function in the salamander retina.The model is used to show how specific interactions between neuronsand between networks of neurons can lead to the integratedresponse behavior of individual cells deep in the retina. Themodel is also used to illustrate how the representation of movingand stationary stimuli is encoded in a series of layer-by-layertransformations leading to the final retinal output at the ganglioncell layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • an der Heiden U, Roth G (1987) Mathematical model and simulation of retina and tectum opticum of lower vertebrates. Acta Biotheoretica 36(3):179–212.

    Google Scholar 

  • Attwell D, Mobbs P, Tessier-Lavigne M, Wilson M (1987) Neurotransmitter-induced currents in retinal bipolar cells of the axolotl, ambystoma mexicanum. J. Physiol.387:125–161.

    Google Scholar 

  • Attwell D, Werblin FS, Wilson M (1982) The properties of single cones isolated from the tiger salamander retina. J. Physiol. 328:259–283.

    Google Scholar 

  • Attwell D, Wilson M, Wu SM (1984) A quantitative analysis of interactions between photoreceptors in the salamander (ambystoma) retina. J. Physiol.352:703–737.

    Google Scholar 

  • Barnes S, Werblin F (1986) Gated currents generate single spike activity in amacrine cells of the tiger salamander. Proc. Natl. Acad. Sci. USA83:1509–1512.

    Google Scholar 

  • Belgum JH, Dvorak DR, McReynolds JS (1983) Sustained and transient synaptic inputs to on-off ganglion cells in the mudpuppy retina. J. Physiol.340:599–610.

    Google Scholar 

  • Borges S, Wilson M (1987) Structure of the receptive fields of bipolar cells in the salamander retina. J. Neurophysiol.58:1275–1291.

    Google Scholar 

  • Cook PB, Werblin FS (1994) Spike initiation and propagation in wide field transient amacrine cells of the salamander retina. J. Neuroscience14:3852–3861.

    Google Scholar 

  • Dong CJ, McReynolds JS (1991) The relationship between light, dopamine release and horizontal cell coupling in the mudpuppy retina. J. Physiol.440:291–309.

    Google Scholar 

  • Dowling JE (1987) The Retina: An Approachable Part of the Brain. Belknap, Cambridge, MA.

    Google Scholar 

  • Eliasof S, Barns S, Werblin FS (1987) The interaction of ionic currents mediating single spike activity in retinal amacrine cells of the tiger salamander. J. Neuroscience7:3512–3524.

    Google Scholar 

  • Frumkes TE, Wu SM (1990) Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons. J. Neurophysiol.64:1043–1054.

    Google Scholar 

  • Grüsser OJ, Grüsser-Cornehls U (1973) Neural mechanisms of visual movement perception and some psychophysical and behavioral correlations. In: R Jung, ed. Handbook of Sensory Physiology Springer, New York. Vol. VII/3A, pp. 333–426.

    Google Scholar 

  • Hare W, Owen WG (1990) Spatial organization of the bipolar cell’s receptive field in the retina of the tiger salamander. J. Physiol. 421:223–245.

    Google Scholar 

  • Hirano AA, MacLeish PR (1991) Glutamate and 2-amino-4-phosphonobutyrate evoke an increase in potassium conductance in retinal bipolar cells. Proc. Natl. Acad. Sci. U.S.A. 88:805–809.

    Google Scholar 

  • Koester J (1985) Nongated channels and passive membrane properties of the neuron. In: E Kandel, J Schwartz, eds. Principles of Neural Science. Elsevier, New York. Ch. 6.

    Google Scholar 

  • Lukasiewicz PD, Werblin F (1988) A slowly inactivating potassium current truncates spike activity in ganglion cells of the tiger salamander retina. J. Neuroscience8:4470–4481.

    Google Scholar 

  • Lukasiewicz PD, Werblin F (1990) The spatial distribution of excitatory and inhibitory inputs to ganglion cell dendrites in the tiger salamander retina. J. Neuroscience10:210–221.

    Google Scholar 

  • Maguire G, Lukasiewicz PD, Werblin FS (1989) Amacrine cell interactions underlying the response to change in the tiger salamander retina. J. Neuroscience9:726–735.

    Google Scholar 

  • Marr D (1982) Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W.H. Freeman, San Francisco.

    Google Scholar 

  • Miller RF (1976) Synaptic organization and ionic basis of on and off channels in mudpuppy retina. iii. a model of ganglion cell receptive field organization based on chloride-free experiments. J. Gen. Physiol.67:679–690.

    Google Scholar 

  • Miller RF, Dacheux RF (1983) Intracellular chloride in retinal neurons: Measurement and meaning. Vision Res.23:399–411.

    Google Scholar 

  • Miller RF, Frumkes TE, Slaughter M, Dacheux RF (1981) Synaptic organization and ionic basis of on and channels in mudpuppy retina. iii. a model of ganglion cell receptive field organization based on chloride-free experiments. J. Neurophysiol.54:743–763.

    Google Scholar 

  • Moreno-Diaz R, Royo Rubio F, Rubio E (1980) A theoretical proposal to account for visual computation in a frog’s retina. International Journal of Biomedical Computing11:415–426.

    Google Scholar 

  • Nawy S, Copenhagen DR (1987) Multiple classes of glutamate receptor on depolarizing bipolar cells in retina. Nature325:56–58.

    Google Scholar 

  • Nelson R (1973) A comparison of electrical properties of neurons in necturus retina. J. Neurophysiol.36:519–535.

    Google Scholar 

  • Oguztöreli MN, Caelli TM. (1986) The relationship between signal response selectivity and the functional structure of complex retinal networks. Biological Cybernetics53:229–238.

    Google Scholar 

  • Owen GW, Hare WA, Wang A (1989) The role of the bipolar cell in retinal signal processing. Proceedings of the 1989 IEEE International Conference on Systems, Man and Cybernitics, Nov. 14–17. IEEE Catalog No. 89CH2809-2, New York, NY.

  • Skrzypek J (1984) Electrical coupling between horizonal cell bodies in the tiger salamander retina. Vision Research24:701–711.

    Google Scholar 

  • Toris CB, Eiesland JL, Miller RR (1995) Morphology of ganglion cells in the neotenous tiger salamander retina. Journal of Comparative Neurology352:535–559.

    Google Scholar 

  • Werblin F (1971) Adaptation in a vertebrate retina: Intracellular recording in necturus. J. Neurophysiol. 34:228–241.

    Google Scholar 

  • Werblin FS, Dowling JE (1969) Organization of the retina of the mudpuppy, necturus maculosus. ii. Intracellular recording. J. Neurophysiol. 32:339–355.

    Google Scholar 

  • Werblin FS, Maguire G, Lukasiewicz P, Eliasof S, Wu SM (1988) Neural interactions mediating the detection of motion in the retina of the tiger salamander. Visual Neuroscience1:317–329.

    Google Scholar 

  • Wu SM (1987) Light-dependent synaptic delay between photoreceptors and horizontal cells in the tiger salamander retina. Vision Research27:363–367.

    Google Scholar 

  • Wu SM (1992) Feedback connections and operation of the outer plexiform layer of the retina. Current Opinion in Neurobiology 2:462–468.

    Google Scholar 

  • Wu SW (1991a) Feedforward lateral inhibition in retinal bipolar cells: Input-output relation of the horizontal cell-depolarizing bipolar cell synapse. Proc. Natl. Acad. Sci. U.S.A.88: 3310–3313.

    Google Scholar 

  • Wu SW (1991b) Input-output relations of the feedback synapse between horizontal cells and cones in the tiger salamander retina. J. Neurophysiol.65:1197–1206.

    Google Scholar 

  • Wunk DF, Werblin FS (1979) Synaptic inputs to the ganglion cells in the tiger salamander. J. Gen. Physiol.73:265–286.

    Google Scholar 

  • Yang XL, Wu S (1989) Effects of background illumination on the horizontal cell responses in the tiger salamander retina. J. Neuroscience 9:815–827.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teeters, J., Jacobs, A. & Werblin, F. How Neural Interactions Form Neural Responses in the Salamander Retina. J Comput Neurosci 4, 5–27 (1997). https://doi.org/10.1023/A:1008840709467

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008840709467

Navigation