Skip to main content
Log in

Self Calibration of the Fixation Movement of a Stereo Camera Head

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this article we show how an active stereo camera head can be made to autonomously learn to fixate objects in space. During fixatio n, the system performs an initial and a correction saccade. In the learning phase the correction saccade is controlled by a crude prewired algorithm, in analogy to a mechanism surmised to exist in the brainstem. A vector-based neural network serves as the adaptive component in our system. A self-organizing fovea improves dramatically the convergence of the learning algorithm and the accuracy of the fixation. As a possible application we describe the visuo-motor coordination of the camera head with an anthropomorphic robot arm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anastasio, T.J. and Robinson, D.A. 1989. The distributed representation of vestibulo-oculomotor signals by brain-stem neurons. Biological Cybernetics, 61:79-88.

    Google Scholar 

  • Becker, M., Kefalea, E., Maël, E., Pagel, M., Triesch, J., Vorbrueggen, J.C., Malsburg, C.v.d., and Zadel, S. 1998. Gripsee: A robot for visually-guided grapsing. IEEE International Conference on Robotics and Automation ICRA 98, submitted.

  • Carpenter, R.H.S. 1988. Movements of the Eyes, 2nd edition, Pion: London.

    Google Scholar 

  • Craig, John J. 1989. Introduction to Robotics: Mechanics and Control, 2nd edition, Addison-Wesley: New York.

    Google Scholar 

  • Dean, P., Mayhew, J.E., and Langdon, P.M. 1994. Learning and maintaining saccadic accuracy: A model of brainstem-cerebella interactions. Journal of Cognitive Neuroscience, 6:117- 138.

    Google Scholar 

  • Dean, P., Mayhew, J.E., Thacker, N., and Langdon, P.M. 1991. Saccade control in a simulated robot camera-head system: Neural net architectures for efficient learning of inverse kinematics. Biological Cybernetics, 66:27-36.

    Google Scholar 

  • Fritzke, B. 1995a. A growing neural gas network learns topologies. In Advances in Neural Information Processing Systems 7, G. Tesauro, D.S. Touretzky, and T.K. Leen (Eds.), MIT Press: Cambridge, MA, pp. 625-632.

    Google Scholar 

  • Fritzke, B. 1995b. Incremental learning of local linear mappings. In CANN'95: International Conference on Artificial Neural Networks, F. Fogelman and P. Gallinari (Eds.), EC2 & Cie: Paris, pp. 217-222.

    Google Scholar 

  • Grossberg, S. and Kuperstein, M.1986. Neural Dynamics of Adaptive Sensory-Motor Control: Ballistic Eye Movements, 2nd edition, North-Holland: Amsterdam.

    Google Scholar 

  • Grüsser, O.J. and Grüsser-Cornehls, U. 1995. Gesichtssinn und Okulomotorik. In Physiologie des Menschen, Robert F. Schmidt and Gerhard Thews (Eds.), Chapt. 16, Springer: Berlin, pp. 278- 315.

    Google Scholar 

  • Haykin, S. 1994. Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company.

  • Henson, D.B. 1978. Corrective saccades: Effects of altering visual feedback. Vision Res, 18:63-67.

    Google Scholar 

  • Kawato, M., Furaka, K., and Suzuki, R. 1987. A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics, 57:169-185.

    Google Scholar 

  • Keller, E.L. 1989. The cerebellum. In The Neurobiology of Saccadic Eye Movements, Robert H. Wurtz and Michael E. Goldberg (Eds.), Chapt. 11, Elsevier: Amsterdam, pp. 391-409.

    Google Scholar 

  • Martinetz, T. 1992. Selbstorganisierende Neuronale Netzwerkmodelle zur Bewegungssteuerung. Ph.D. thesis, Technische Universität München.

  • Optican, L.M. 1985. Adaptive properties of the saccadic system. In Adaptive Mechanisms in Gaze Control, A. Berthoz and G. Melvill Jones (Eds.), Chapt. 4, Elsevier: Amsterdam, pp. 71- 79.

    Google Scholar 

  • Rao, Rajesh P.N. and Ballard, Dana H. 1995. Learning saccadic eye movements using multiscale spatial filters. Advances in Neural Information Processing Systems, 7:893-900.

    Google Scholar 

  • Ritter, H., Martinetz, T., and Schulten, K. 1992. Neural Computation and Self-Organizing Maps: An Introduction, Addison Wesley: New York.

    Google Scholar 

  • Robinson, D.A. 1968. Eye movement control in primates. Science, 161:1219-1224.

    Google Scholar 

  • Zrenner, E., Abramov, I., Akita, M., Cowey, A., Livingstone, M., and Valberg, A. 1990. Color perception: Retina to cortex. In Visual Perception: The Neurophysiological Foundations, L. Spillmann and J.S. Werner (Eds.), Chapt. 8, Academic Press: New York, pp. 163-204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagel, M., Maël, E. & von der Malsburg, C. Self Calibration of the Fixation Movement of a Stereo Camera Head. Autonomous Robots 5, 355–367 (1998). https://doi.org/10.1023/A:1008866524094

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008866524094