Skip to main content
Log in

Activity-Driven Computational Strategies of a Dynamically Regulated Integrate-and-Fire Model Neuron

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Activity-dependent slow biochemical regulation processes, affecting intrinsic properties of a neuron, might play an important role in determining information processing strategies in the nervous system. We introduce second-order biochemical phenomena into a linear leaky integrate-and-fire model neuron together with a detailed kinetic description for synaptic signal transduction. In this framework, we investigate the membrane intrinsic electrical properties differentiation, showing the appearance of activity-dependent shifts between integration and temporal coincidence detection operating mode, for the single unit of a network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott LF, Kepler TB (1990) Model neurons: From Hodgkin-Huxley to Hopfield. In: Garrido L, ed. Statistical Mechanics of Neural Networks. Springer Verlag, Barcelona. pp. 5–18.

    Google Scholar 

  • Abbott LF, LeMasson G (1993) Analysis of neuron models with dynamically regulated conductances. Neural Comput. 5, 823–842.

    Google Scholar 

  • Bernander O, Douglas RJ, Martin KAC, Koch C (1991) Synaptic background activity influences spatiotemporal integration in single piramidal cells. Proc. Natl. Acad. Sci. 88, 11569–11573.

    Google Scholar 

  • Bialek W, Rieke F, Vansteveninck RRD, Warland D (1991) Reading a neural code. Science 252, 1854–1857.

    Google Scholar 

  • Cash S, Yuste R (1998) Input summation by cultured pyramidal neurons is linear and position-independent. J. Neurosci. 18, 10–15.

    Google Scholar 

  • Chapeau-Blondeau F, Chambet N (1995) Synapse models for neural networks: From ion channel kinetics to multiplicative coefficient w ij. Neural Comput. 7, 713–734.

    Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1994) An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Comput. 6, 14–18.

    Google Scholar 

  • Fries P, Roelfsema PR, Engel AK, Koenig P, Singer W (1997) Synchronization of oscillatory responsed in visual cortex correlates with perception in interocular rivalry. Proc. Natl. Acad. Sci. 94, 12699–12704.

    Google Scholar 

  • Herz J, Krogh A, Palmer RG (1990) Introduction to the Theory of Neural Computation. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81: 3088–3092.

    Google Scholar 

  • Hopfield JJ, Herz AVM (1995) Rapid local synchronization of action potentials: Toward computation with coupled integrate-and-fire neurons. Proc. Natl. Acad. Sci. USA 92, 6655–6662.

    Google Scholar 

  • Konig P, Engel AK, Singer W (1996) Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci. 19: 130–137.

    Google Scholar 

  • LeMasson G, Marder E, Abbott LF (1993) Activity-dependent regulation of conductances in model neurons. Science 259, 1915–1917.

    Google Scholar 

  • Lytton WW (1996) Optimizing synaptic conductance calculation for network simulations. Neural Comput. 8, 501–509.

    Google Scholar 

  • Maas W (1997) Networks of spiking neurons: The third generation of neural network models. Neural Networks 10(9), 1659–1671.

    Google Scholar 

  • Markram H, Pikus D, Gupta A, Tsodyks M (1998) Potential for multiple mechanisms, phenomena and algorithms for synaptic plasticity at single synapses. Neuropharmacology 37 (4–5), 489–500.

    Google Scholar 

  • Meister M, Lagnado L, Baylor DA (1995) Concerted signaling by retunal ganglion-cells. Science 270, 1207–1210.

    Google Scholar 

  • Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213.

    Google Scholar 

  • Papoulis A (1991) Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York.

    Google Scholar 

  • Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes: I. The single spike train. Biophys. J. 7, 391–440.

    Google Scholar 

  • Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1996) Spikes: Exploring the neural code. In: Koch C, Segev I, eds. Methods in Neuronal Modelling: From Synapses to Networks. MIT Press, Cambridge, MA.

    Google Scholar 

  • Rumelhart DE, McClelland JL, PDP Research Group (1992) Parallel Distributed Processing, Explorations in the Microstructure of Cognition, Volume 1: Foundations. MIT Press, Cambridge, MA.

    Google Scholar 

  • Salinas E, Abbott LF (1994) Vector reconstruction from firing rates. J. Comp. Neurosci. 1, 89–107.

    Google Scholar 

  • Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr. Op. Neurobiol. 4: 569–579.

    Google Scholar 

  • Shadlen MN, Newsome WT (1995) Is there a signal in the noise? Curr. Op. Neurobiol. 5: 248–250.

    Google Scholar 

  • Siegel M, Marder E, Abbott LF (1994) Activity-dependent current distributions in model neurons. Proc. Natl. Acad. Sci. 91, 11308–11312.

    Google Scholar 

  • Softky WR (1995) Simple codes versus efficient codes. Curr. Op. Neurobiol. 5, 239–247.

    Google Scholar 

  • Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13, 334–350.

    Google Scholar 

  • Turrigiano G, LeMasson G, Marder E (1995) Selective regulation of current densities underlies sponteneus changes in the activity of cultured neurons. J. Neurosci. 15, 3640–3653.

    Google Scholar 

  • Vapnik VN (1995) The Nature of Statistical Learning. Springer-Verlag, New York.

    Google Scholar 

  • Yamada WM, Koch C, Adams PR (1989) Multiple channels and calcium dynamics. In: Koch C, Segev I, eds. Methods in Neuronal Modelling: From Synapses to Networks. MIT Press, Cambridge, MA. pp. 97–133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giugliano, M., Bove, M. & Grattarola, M. Activity-Driven Computational Strategies of a Dynamically Regulated Integrate-and-Fire Model Neuron. J Comput Neurosci 7, 247–254 (1999). https://doi.org/10.1023/A:1008979302515

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008979302515

Navigation