Abstract
Epilepsy is one of the most common disorders of the nervous system. The progressive entrainment between an epileptogenic focus and normal brain areas results to transitions of the brain from chaotic to less chaotic spatiotemporal states, the epileptic seizures. The entrainment between two brain sites can be quantified by the T-index from the measures of chaos (e.g., Lyapunov exponents) of the electrical activity (EEG) of the brain. By applying the optimization theory, in particular quadratic zero-one programming, we were able to select the most entrained brain sites 10 minutes before seizures and subsequently follow their entrainment over 2 hours before seizures. In five patients with 3–24 seizures, we found that over 90% of the seizures are predictable by the optimal selection of electrode sites. This procedure, which is applied to epilepsy research for the first time, shows the possibility of prediction of epileptic seizures well in advance (19.8 to 42.9 minutes) of their occurrence.
Similar content being viewed by others
References
H.D.I. Abarbanel, Analysis of Observed Chaotic Data, Springer-Verlag: New York, 1996.
B.W. Abou-Khalil, G.J. Seigel, J.C. Sackellares, S. Gilman, R. Hichwa, and R. Marshall, “Positron emission tomograghy studies of cerebral glucose metabolism in patients with chronic partial epilepsy,” Ann. Neurol., vol. 22, pp. 480-486, 1987.
G.G. Athanasiou, C.P. Bachas, and W.F. Wolf, “Invariant geometry of spin-glass states,” Phy.Rev.B, vol. 35, pp. 1965-1968, 1987.
F. Barahona, “On the computational complexity of spin glass models,” J. Phys. A: Math. Gen., vol. 15, pp. 3241-3253, 1982a.
F. Barahona, “On the exact ground states of three-dimensional ising spin glasses,” J. Phys. A: Math. Gen., vol. 15, pp. L611-L615, 1982b.
H. Berger, “Uber das elektroenkephalogramm des menchen,” Arch. Psychiatr. Nervenkr., vol. 87, pp. 527-570, 1929.
D.E. Burdette, Sakuraisy, T.R. Henry, D.A. Ross, P.B. Pennell, K.A. Frey, J.C. Sackellares, and R. Albin, “Temporal lobe central benzodiazepine binding in unilateral mesial temporal lobe epilepsy,” Neurology, vol. 45, pp. 934-941, 1995.
M. Casdagli, L.D. Iasemidis, R.L. Gilman, S.N. Roper, R.S. Savit, and J.C. Sackellares, “Nonlinearity in invasive EEG recordings from patients with temporal lobe epilepsy,” Electroenceph. Clin. Neurophysiol., vol. 102, pp. 98-105, 1997.
M. Casdagli, L.D. Iasemidis, J.C. Sackellares, S.N. Roper, R.L. Gilman, and R.S. Savit, “Characterizing nonlin-earity in invasive EEG recordings from temporal lobe epilepsy,” Physica D, vol. 99, pp. 381-399, 1996.
G. Casella and R.L. Berger, Statistical Inference, Duxbury Press: Belmont, CA, 1990.
R. Caton, “The electric currents of the brain,” BMJ, vol. 2, p. 278, 1875.
J.P. Eckmann, S.O. Kamphorst, D. Ruelle, and S. Ciliberto, “Lyapuunov exponents from time series,” Phys. Rev. A, vol. 34, pp. 4971-4972, 1986.
C.E. Elger and K. Lehnertz, “Seizure prediction by non-linear time series analysis of brain electrical activity,” Europ. J. Neurosci., vol. 10, pp. 786-789, 1998.
T. Elbert, W.J. Ray, J. Kowalik, J.E. Skinner, K.E. Graf, and N. Birbaumer, “Chaos and physiology: Deterministic chaos in excitable cell assemblies,” Physiol. Rev., vol. 74, pp. 1-47, 1994.
J. Engel Jr., D.E. Kuhl, M.E. Phelps, and J.C. Mazziota, “Interictal cerebral glucose metabolism in partial epilepsy and its relation to EEG changes,” Ann. Neurol., vol. 12, pp. 510-517, 1982.
M.A. Falconer, E.A. Serefetinides, and J.A.N. Corsellis, “Aetiology and pathogenesis of temporal lobe epilepsy,” Arch. Neurol., vol. 19, pp. 233-240, 1964.
M. Feucht, U. Moller, H. Witte, F. Benninger, S. Asenbaum, D. Prayer, and M.H. Friedrich, “Application of correlation dimension and pointwise dimension for non-linear topographical analysis of focal onset seizures,” Med. Biol. Eng. Comp., vol. 37, pp. 208-217, 1999.
A.M. Fraser and H.L. Swinney, “Independent coordinates for strange attractors from mutual information,” Phys. Rev. A, vol. 33, pp. 1134-1140, 1986.
P. Gloor, Hans Berger on the Electroencephalogram of Man, Elsevier: Amsterdam, 1969.
P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D, vol. 9, pp. 189-208, 1983a.
P. Grassberger and I. Procaccia, “Characterization of strange attractors,” Phys. Rev. Lett., vol. 50, pp. 346-349, 1983b.
P. Grassberger, T. Schreiber, and C. Schaffrath, “Nonlinear time sequence analysis,” Int. J. Bifurc. Chaos, vol. 1, pp. 521-547, 1991.
A.V. Holden, Chaos-Nonlinear Science: Theory and Applications, University Press: Manchester, 1986.
H. Horst, P.M. Pardalos, and V. Thoai, Introduction to Global Optimization, Series on Nonconvex Optimization and its Applications, 3, Kluwer Academic Publishers: Dordrecht, 1995.
L.D. Iasemidis, H.P. Zaveri, J.C. Sackellares, and W.J. Williams, “Linear and nonlinear modeling of ECoG in temporal lobe epilepsy,” 25th Annual Rocky Mountain Bioengineering Symposium, vol. 24, pp. 187-193, 1988.
L.D. Iasemidis, J.C. Sackellares, H.P. Zaveri, and W.J. Williams, “Phase space topography of the electrocorticogram and the Lyapunov exponent in partial seizures,” Brain Topogr., vol. 2, pp. 187-201, 1990.
L.D. Iasemidis, “On the dynamics of the human brain in temporal lobe epilepsy,” PhD Thesis, University of Michigan, Ann Arbor, 1991.
L.D. Iasemidis and J.C. Sackellares, “The temporal evolution of the largest Lyapunov exponent on the human epileptic cortex,” in Measuring Chaos in the Human Brain, D.W. Duke and W.S. Pritchard (Eds.), World Scientific: Singapore, 1991.
L.D. Iasemidis, J.C. Sackellares, and R.S. Savit, “Quantification of hidden time dependencies in the EEG within the framework of nonlinear dynamics,” in Nonlinear Dynamical Analysis of the EEg, B.H. Jansen and M.E. Brandt (Eds.), World Scientific: Singapore, 1993.
L.D. Iasemidis, L.D. Olson, J.C. Sackellares, and R. Savit, “Time dependencies in the occurrences of epileptic seizures: A nonlinear approach,” Epilepsy Research, vol. 17, pp. 81-94, 1994.
L.D. Iasemidis, J.C. Principe, and J.C. Sackellares, “Spatiotemporal dynamics of human epileptic seizures,” in 3 rd Experimental Chaos Conference, R.G. Harrison, W. Lu, W. Ditto, L. Pecora, M. Spano, and S. Vohra (Eds.), World Scientific: Singapore, 1996.
L.D. Iasemidis and J.C. Sackellares, “Chaos theory and epilepsy,” The Neuroscientist, vol. 2, pp. 118-126, 1996.
L.D. Iasemidis, J.C. Principe, J.M. Czaplewski, R.L. Gilman, S.N. Roper, and J.C. Sackellares, “Spatiotemporal transition to epileptic seizures: A nonlinear dynamical analysis of scalp and intracranial EEG recordings,” in Spatiotemporal Models in Biological and Artifical Systems, F. Lopes da Silva, J.C. Principe, and L.B. Almeida (Eds.), IOS Press: Amsterdam, 1997.
L.D. Iasemidis, J.C. Principe, and J.C. Sackellares, “Measurement and quantification of spatiotemporal dynamics of human epileptic seizures,” in Nonlinear Biomedical Signal Processing, 2, M. Akay (Ed.), IEEE Press, pp. 294-298, 2000.
L.D. Iasemidis, D.S. Shidu, P. Pardalos, and J.C. Sackellares, “Transition to epileptic seizures-an optimization approach into its dynamics,” in Discrete Problems with Medical Applications, D.Z. Du, P.M. Pardalos, and J. Wang, DIMACS Series American Mathematical Society Publishing Co., vol. 55, pp. 55-74, 2000.
B.H. Jansen, “Is it and so what? A critical review of EEG-chaos,” in Measuring Chaos in the Human Brain, D.W. Duke and W.S. Pritchard (Eds.), World Scientific: Singapore, 1991.
A.N. Kolmogorov, “The general theory of dynamical systems and classical mechanics,” in Foundations of Mechanics, R. Abraham and J.E. Marsden (Eds.), 1954.
E.J. Kostelich, “Problems in estimating dynamics from data,” Physica D, vol. 58, pp. 138-152, 1992.
K. Lehnertz and C.E. Elger, “Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss,” Electroenceph. Clin. Neurophysiol., vol. 95, pp. 108-117, 1995.
K. Lehnertz and C.E. Elger, “Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity,” Phys. Rev. Lett., vol. 80, pp. 5019-5022, 1998.
M. Le Van Quyen, J. Martinerie, C. Adam, and F.J. Varela, “Nonlinear spatio-temporal interdependences of interictal intracranial EEG recordings from patients with temporal lobe epilepsy: Localizing of epileptogenic foci,” Physica D, vol. 127, pp. 250-266, 1999a.
M. Le Van Quyen, J. Martinerie, M. Baulac, and F. Varela, “Anticipating epileptic seizures in real time by a non-linear analysis of similarity between EEG recordings,” NeuroReport, vol. 10, pp. 2149-2155, 1999b.
F. Lopes da Silva, “EEG analysis: Theory and practice; computer-assisted EEG diagnosis: Pattern recognition tech-niques,” in Electroencephalography: Basic Principles, Clinical Applications and Related Field, E. Niedermeyer and F. Lopes da Silva (Eds.), Urban and Schwarzenberg: Baltimore, 1987.
J. Martinerie, C. Adam, M. Le Van Quyen, M. Baulac, S. Clemenceau, B. Renault, and F.J. Varela, “Epileptic seizures can be anticipated by non-linear analysis,” Nature Medicine, vol. 4, pp. 1173-1176, 1998.
J.H. Margerison and J.A.N. Corsellis, “Epilepsy and the temporal lobes,” Brain, vol. 89, pp. 499-530, 1966.
G. Mayer-Kress, Dimension and Entropies in Chaotic Systems, Springer-Verlag: Berlin, 1986.
J.W. McDonald, E.A. Garofalo, T. Hood, J.C. Sackellares, S. Gilman, P.E. McKeever, J.C. Troncaso, and M.V. John-ston, “Altered excitatory and inhibitory aminoacid receptor binding in hippocampus of patients with temporal lobe epilepsy,” Annals of Neurology, vol. 29, pp. 529-541, 1991.
M. Mezard, G. Parisi, and M.A. Virasoro, Spin Glass Theory and Beyond, World Scientific: Singapore, pp. 112-133, 1987.
J.J. Moré and S.J. Wright, Optimization Software Guide, SIAM, Philadelphia, 1994.
E. Niedermeyer, “Depth electroencephalography,” in Electroencephalography: Basic Principles, Clinical Appli-cations and Related Fields, E. Niedermeyer and F. Lopes da Silva (Eds.), Urban and Schwarzenberg: Baltimore, 1987.
A. Oseledec, “A multiplicative ergodic theorum-Lyapunov characteristic numbers for dynamical systems (English translation),” IEEE Int. Conf. ASSP, vol. 19, pp. 179-210, 1968.
N.H. Packard, J.P. Crutchfield, J.D. Farmer, and R.S. Shaw, “Geometry from time series,” Phys. Rev. Lett., vol. 45, pp. 712-716, 1980.
M. Palus, V. Albrecht, and I. Dvorak, “Information theoretic test for nonlinearity in time series,” Phys. Lett. A, vol. 175, pp. 203-209, 1993.
P.M. Pardalos and G. Rodgers, “Parallel branch and bound algorithms for unconstrained quadratic zero-one programming,” in Impact of Recent Computer Advances on Operations Research, R. Sharda et al. (Eds.), North-Holland, 1989.
P.M. Pardalos and G. Rodgers, “Computational aspects of a branch and bound algorithm for quadratic zero-one programming,” Computing, vol. 45, pp. 131-144, 1990.
J. Pesin, “Characteristic Lyapunov exponents and smooth ergodic theory,” Russian Math. Survey, vol. 4, pp. 55-114, 1977.
A. Renyi, Probability Theory, Elsevier: Amsterdam, 1970.
J.C. Sackellares, L.D. Iasemidis, R.L. Gilman, and S.N. Roper, “Epilepsy-When chaos fails,” in Chaos in the Brain? P. Grassberger, C.E. Elger, and K. Lehnertz (Eds.), World Scientific: Singapore, pp. 112-133, 2000.
J.C. Sackellares, L.D. Iasemidis, H.P. Zaveri, and W.J. Williams, “Measurement of chaos to localize seizure onset,” Epilepsia, vol. 30, p. 663, 1989a.
J.C. Sackellares, L.D. Iasemidis, H.P. Zaveri, W.J. Williams, and T.W. Hood, “Inference on the chaotic behavior of the epileptogenic focus,” Epilepsia, vol. 29, p. 682, 1989b.
J.C. Sackellares, G.J. Siegel, B.W. Abou-Khalil, T.W. Hood, S. Gilman, P. McKeever, R.D. Hichwa, and G.D. Hutchins, “Differences between lateral and mesial temporal metabolism interictally in epilepsy of mesial temporal origin,” Neurology, vol. 40, p. 1420-1426, 1990.
F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Lecture Notes in Mathematics, D.A. Rand and L.S. Young (Eds.), Springer-Verlag: Heidelburg, 1981.
M.J. Van der Heyden, D.N. Velis, B.P.T. Hoekstra, J.P.M. Pijn, W. Van Emde Boas, C.W.M. Van Veelen, P.C. Van Rijen, F.H. Lopes da Silva, and J. DeGoede, “Non-linear analysis of intracranial human EEG in temporal lobe epilepsy,” Clinical Neurophysiology, vol. 110, pp. 1726-1740, 1999.
J.A. Vastano and E.J. Kostelich, “Comparison of algorithms for determining Lyapunov exponents from experimental data,” in Dimensions and Entropies in Chaotic Systems: Quantification of Complex Behavior, G. Mayer-Kress (Ed.), Springer-Verlag: Berlin, 1986.
P. Walters, An Introduction to Ergodic Theory, Springer-Verlag: Berlin, 1982.
Weisberg, Applied Linear Regression, Wiley: New York, 1990.
A. Wolf, J.B. Swift, H.L. Swinney, and J.A. Vastano, “Determining Lyapunov exponents from a time series,” Physica D, vol. 16, pp. 285-317, 1985.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Iasemidis, L., Pardalos, P., Sackellares, J. et al. Quadratic Binary Programming and Dynamical System Approach to Determine the Predictability of Epileptic Seizures. Journal of Combinatorial Optimization 5, 9–26 (2001). https://doi.org/10.1023/A:1009877331765
Issue Date:
DOI: https://doi.org/10.1023/A:1009877331765