Skip to main content
Log in

Estimating Uncertainties for Geophysical Tomography

  • Published:
Reliable Computing

Abstract

We present statistical and interval techniques for evaluating the uncertainties associated with geophysical tomographic inversion problems, including estimation of data errors, model errors, and total solution uncertainties. These techniques are applied to the inversion of traveltime data collected in a cross well seismic experiment. The inversion method uses the conjugate gradient technique, incorporating expert knowledge of data and model uncertainty to stabilize the solution. The technique produced smaller uncertainty than previous tomographic inversion of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Albright, J. N., Johnson, P. A., Phillips, W. S., Bradley, C. R., and Rutledge, J. T.: The Crosswell, Acoustic Survey Project, Los Alamos National Laboratory Report LA-11157-MA, 1988.

  2. Alefeld, G. and Mayer, G.: A Computer Aided Existence and Uniqueness Proof for an Inverse Matrix Eigenvalue Problem, Interval Computations 1 (1994), pp. 4–27.

    Google Scholar 

  3. Backus, G. E. and Gilbert, J. F.: Uniqueness in the Inversion of Gross Earth Data, Phil. Trans. Roy. Soc. London, Ser. A 266 (1970), pp. 123–192.

    Google Scholar 

  4. Baker, M. R.: Quantitative Interpretation of Geological and Geophysical Well Data, Ph.D. Dissertation, University of Texas at El Paso, El Paso, TX, 1988.

    Google Scholar 

  5. Baker, M. R. and Doser, D. I.: Joint Inversion of Regional and Teleseismic Earthquake Waveforms, J. Geophys. Res. 93 (1988), pp. 2037–2046.

    Google Scholar 

  6. Ben-Haim, Y. and Elishakoff, I.: Dynamics and Failure of a Thin Bar with Unknown but Bounded Imperfections, in: Hui, D. and Jones, N. (eds), Recent Advances in Impact Dynamics of Engineering Structures, 1989, AND-Vol. 105, AD-Vol. 17, ASME, N.Y., 1989, pp. 89–96.

    Google Scholar 

  7. Ben-Haim, Y. and Elishakoff, I.: Non-Probabilistic Models of Uncertainty in the Buckling of Shells with General Imperfections: Theoretical Derivation of the Knockdown Factor, Journal of Applied Mechanics 56 (1989), pp. 403–410.

    Google Scholar 

  8. Ben-Haim, Y. and Elishakoff, I.: Convex Models of Uncertainty in Applied Mechanics, Elsevier Publ., Amsterdam, 1990.

    Google Scholar 

  9. Bernat, A., Villa, E., Bhamidipati, K., and Kreinovich, V.: Parallel Interval Computations as a Background Problem: When Processors Come and Go, in: International Conference on Interval and Computer-Algebraic Methods in Science and Engineering (Interval'94), St. Petersburg, Russia, March 7–10, 1994, Abstracts, pp. 51–53.

  10. Bhamidipati, K.: PVM Estimates Errors Caused by Imprecise Data, in: Proceedings of the 1994 PVM Users' Group Meeting, Oak Ridge, TN, May 19–20, Center for Research on Parallel Computations, Session 2A, 1994.

  11. Bickel, P. J. and Lehmann, E. L.: Descriptive Statistics for Nonparametric Models. 1. Introduction, Ann. Statist. 3 (1975), pp. 1045–1069.

    Google Scholar 

  12. Buchanan, B. G. and Shortliffe, E. H.: Rule-Based Expert Systems. The MYCIN Experiments of the Stanford Heuristic Programming Project, Addison-Wesley, Reading, MA, Menlo Park, CA, 1984.

    Google Scholar 

  13. Claerbout, J. R. and Muir, F.: Robust Modeling with Erratic Data, Geophysics 38 (1973), pp. 826–844.

    Google Scholar 

  14. Crain, K., Baker, M., and Kreinovich, V.: A Simple Uncertainty Estimator for Tomographic Inversions, Proc. 2nd Borehole Seismics Conference, Tohoku University, Sendai, Japan, 1993.

    Google Scholar 

  15. Dong, W. M., Chiang, W. L., and Shah, H. C.: Fuzzy Information Processing in Seismic Hazard Analysis and Decision Making, International Journal of Soil Dynamics and Earthquake Engineering 6(4) (1987), pp. 220–226.

    Google Scholar 

  16. Elishakoff, I.: Convex Versus Probabilistic Modeling of Uncertainty in Structural Dynamics, in: Petyt, M., Wolfe, H. F., and Mei, C. (eds), Structural Dynamics: Recent Advances, Elsevier Applied Science Publishers, London, 1991, pp. 3–21.

    Google Scholar 

  17. Elishakoff, I.: Essay on Reliability Index, Probabilistics Interpretation of Safety Factor, and Convex Models of Uncertainty, in: Casciati, F. and Roberts, J. B. (eds), Reliability Problems: General Principles and Applications in Mechanics of Solids and Structures, Springer Verlag, 1991, pp. 237–271.

  18. Elishakoff, I.: Some Questions in Engineering Eigenvalue Problems in Natural Sciences, in: Albrecht, J., Collatz, L., Hagedorn, P., and Velte, W. (eds). Numerical Treatment of Eigenvalue Problems, Int. Series of Numerical Mathematics, Vol. 96, Birkhäuser Publishers, Basel, Switzerland, 1991, pp. 71–107.

    Google Scholar 

  19. Elishakoff, I.: Essay on Uncertainties in Elastic and Viscoelastic Structures: from A. M. Freudental's Criticisms to Modern Convex Modeling, Intl. Journal of Computers and Structures (1995).

  20. Elishakoff, I. and Ben-Haim, Y.: Dynamics of a Thin Cylindrical Shell under Impact with Limited Deterministic Information on Its Initial Imperfections, Journal of Structured Safety 8 (1990), pp. 103–112.

    Google Scholar 

  21. Elishakoff, I., Cai, G. Q., and Starnes, Jr., J. H.: Non-Linear Buckling of a Column with Initial Imperfections via Stochastic and Non-Stochastic, Convex Models, Int. Journal of Non-Linear Mechanics 29 (1994), pp. 71–82.

    Google Scholar 

  22. Elishakoff, I. and Colombi, P.: Ideas of Probability and Convexity Combined for Analyzing Parameter Uncertainty, in: Schüller, G. I., Shinozuka, M., and Yao, J. (eds), Proceedings of the 6th Intl. Conference on Structural Safety and Reliability, Balkema Publ., Rotterdam, 1994, Vol. 2, pp. 109–113.

    Google Scholar 

  23. Elishakoff, I. and Fang, J. J.: A New Safety Factor Based on Convex Modeling, Journal of Structural Safety (1995).

  24. Elishakoff, I., Gana-Snvili, Y., and Givoli, D.: Treatment of Uncertain Imperfections as a Convex Optimization Problem. in: Esteva, L. and Ruiz, S. E. (eds), Proceedings of the Sixth Intl. Conference on Applications of Statistics and Probability in Civil Engineering, Mexico, 1991, Vol. 1, pp. 150–157.

  25. Fuller, W. A.: Measurement Error Models, J. Wiley & Sons, New York, 1987.

    Google Scholar 

  26. Gerstenberger, M. C.: Development of New Techniques in Crosswell Seismic Travel Time Tomography, M.S. Thesis, Department of Geological Sciences, University of Texas at El Paso, El Paso, TX, 1994.

    Google Scholar 

  27. Givoli, D., Elishakoff, I., and Stavsky, Y.: A Boundary-Perturbation Finite-Element Method for Plane Elasticity Problems, Computer Methods in Applied Mechanics and Engineering 96 (1992), pp. 45–63.

    Google Scholar 

  28. Gomberg, J. S., Shedlock, K. M., and Roecker, S. W.: The Effect of S-Wave Arrival Times on the Accuracy of Hypocenter Estimation, Bull. Seismol. Soc. Am. 80 (1990), pp. 1605–1628.

    Google Scholar 

  29. Hammer, R., Hocks, M., Kulisch, U., and Ratz, D.: Numerical Toolbox for Verified Computing. I. Basic Numerical Problems, Springer Verlag, Heidelberg, N.Y., 1993.

    Google Scholar 

  30. Hansen, E. R.: Global Optimization Using Interval Analysis, Marcel Dekker, N.Y., 1992.

    Google Scholar 

  31. Hearn, T. M.: Pn Travel Times in Southern California, J. Geophys. Res. 89 (1984), pp. 1843–1855.

    Google Scholar 

  32. Hearn, T. M. and Ni, J. F.: Pn Velocities Beneath Continental Collision Zones: the Turkish-Iranian Plateau, Geophys. J. Int. 117 (1994), pp. 273–283.

    Google Scholar 

  33. Jackson, D. D.: The Use of A Priori Data to Resolve Non-Uniqueness in Linear Inversion, Geophys. J. R. Astron. Soc. 57 (1979), pp. 137–157.

    Google Scholar 

  34. Kirillova, I. S., Kreinovich, V., and Solopchenko, G. N.: Distribution-Independent Estimators of Error Characteristics of Measuring Instruments, Measuring Techniques 32(7) (1989), pp. 621–627.

    Google Scholar 

  35. Köylüoglu, H. U., Cakmak, A. S., and Nielsen, S. R. K.: Applications of Interval Mapping in Mechanics for Structural Uncertainties and Pattern Loading, Department of Building Technology and Structural Engineering. Aaborg University, Paper No. 121, 1994.

  36. Kreinovich, V.: A General Approach to Analysis of Uncertainty in Measurements, in: Proceedings of the the 3-rd USSR National Symposium on Theoretical Metrology, Leningrad, Mendeleev Metrology Institute (VNIIM), 1986, pp. 187–188 (in Russian).

  37. Kreinovich, V., Bernat, A., Villa, E., and Mariscal, Y.: Parallel Computers Estimate Errors Caused by Imprecise Data, Interval Computations 2 (1991), pp. 21–46.

    Google Scholar 

  38. Kreinovich, V., Nemir, D., and Gutierrez, E.: Applications of Interval Computations to Earthquake-Resistant Engineering: How to Compute Derivatives of Interval Functions Fast, Interval Computations 1(2) (1995), pp. 141–172.

    Google Scholar 

  39. Kreinovich, V. and Pavlovich, M. I.: Error Estimate of the Result of Indirect Measurements by Using a Calculational Experiment, Measurement Techniques 28(3) (1985), pp. 201–205.

    Google Scholar 

  40. Li, Y. W., Elishakoff, I., Starnes, Jr., J. H., and Shinozuka, M.: Prediction of Natural Frequency and Buckling Load Variability by Convex Modeling, Fields Institute Communications. American Math. Society, 1995.

  41. Moore, R.: Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.

    Google Scholar 

  42. Morgenstein, D. and Murphy, J.: An Application of Parallel Interval Techniques to Geophysics, in: Extended Abstracts of APIC'95: International Workshop on Applications of Interval Computations, El Paso, TX. Febr. 23–25, 1995, Reliable Computing (1995), Supplement, p. 155.

  43. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  44. Novitskii, P. V. and Zograph, I. A.: Estimating the Measurement Errors, Energoatomizdat, Leningrad, 1991 (in Russian).

    Google Scholar 

  45. Parker, R. L.: Geophysical Inverse Theory, Princeton University Press, Princeton, NJ, 1994.

    Google Scholar 

  46. Petroy, D. E. and Wines, D. A.: Historical Seismicity and Implications for a Diffuse Plate Convergence in the Northeast Indian Ocean, J. Geoph. Res. 94 (1989), pp. 12301–12319.

    Google Scholar 

  47. Phillips, W. S.: Personal Communication, 1993.

  48. Press, F.: Earth Models Obtained by Monte-Carlo Inversion, J. Geoph. Res. 73 (1968), pp. 5223–5234.

    Google Scholar 

  49. Rabinovich, S.: Measurement Errors: Theory and Practice, American Institute of Physics, N.Y., 1993.

    Google Scholar 

  50. Scales, J. A., Gersztenkorn, A., and Treitel, S.: Fast l R Solutions of Large, Sparse, Linear Systems: Application to Seismic Travel Time Tomography, J. Comput. Physics 75 (1988), pp. 314–333.

    Google Scholar 

  51. Shevlyakov, G. L. and Vil'chevskiy, N. O.: On the Choice of an Optimization Criterion under Uncertainty in Interval Computations—Nonstochastic Approach, in: Extended Abstracts of APIC'95: International Workshop on Applications of Interval Computations, El Paso, TX, Febr. 23–25, 1995, Reliable Computing (1995), Supplement, pp. 188–189.

  52. Shortliffe, E. H.: Computer-Based Medical Consultation: MYCIN, Elsevier, New York, 1976.

    Google Scholar 

  53. Stewart, R. R.: Exploration Seismic Tomography: Fundamentals, in: Domenico, S. N. (ed.), Course Notes Series, Vol. 3, Soc. of Explor. Geophys., Tulsa, Oklahoma, 1991.

    Google Scholar 

  54. Tarantola, A.: Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, Elsevier, Amsterdam, 1987.

    Google Scholar 

  55. Tarantola, A. and Valette, B.: Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion, Rev. Geophys. 20 (1982), pp. 219–232.

    Google Scholar 

  56. Villa, E., Bernat, A., and Kreinovich, V.: Estimating Errors of Indirect Measurement on Realistic Parallel Machines: Routings on 2-D and 3-D Meshes That Are Nearly Optimal, Interval Computations 4 (1993), pp. 154–175.

    Google Scholar 

  57. Wadsworth, Jr., H. M. (ed.): Handbook of Statistical Methods for Engineers and Scientists, McGraw-Hill, N.Y., 1990.

    Google Scholar 

  58. Zimmerman, H. H. and Zysno, P.: Latent Connectives in Human Decision Making, Fuzzy Sets and Systems 4 (1980), pp. 37–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doser, D.I., Crain, K.D., Baker, M.R. et al. Estimating Uncertainties for Geophysical Tomography. Reliable Computing 4, 241–268 (1998). https://doi.org/10.1023/A:1009903529250

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009903529250

Keywords