Abstract
We present statistical and interval techniques for evaluating the uncertainties associated with geophysical tomographic inversion problems, including estimation of data errors, model errors, and total solution uncertainties. These techniques are applied to the inversion of traveltime data collected in a cross well seismic experiment. The inversion method uses the conjugate gradient technique, incorporating expert knowledge of data and model uncertainty to stabilize the solution. The technique produced smaller uncertainty than previous tomographic inversion of the data.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Albright, J. N., Johnson, P. A., Phillips, W. S., Bradley, C. R., and Rutledge, J. T.: The Crosswell, Acoustic Survey Project, Los Alamos National Laboratory Report LA-11157-MA, 1988.
Alefeld, G. and Mayer, G.: A Computer Aided Existence and Uniqueness Proof for an Inverse Matrix Eigenvalue Problem, Interval Computations 1 (1994), pp. 4–27.
Backus, G. E. and Gilbert, J. F.: Uniqueness in the Inversion of Gross Earth Data, Phil. Trans. Roy. Soc. London, Ser. A 266 (1970), pp. 123–192.
Baker, M. R.: Quantitative Interpretation of Geological and Geophysical Well Data, Ph.D. Dissertation, University of Texas at El Paso, El Paso, TX, 1988.
Baker, M. R. and Doser, D. I.: Joint Inversion of Regional and Teleseismic Earthquake Waveforms, J. Geophys. Res. 93 (1988), pp. 2037–2046.
Ben-Haim, Y. and Elishakoff, I.: Dynamics and Failure of a Thin Bar with Unknown but Bounded Imperfections, in: Hui, D. and Jones, N. (eds), Recent Advances in Impact Dynamics of Engineering Structures, 1989, AND-Vol. 105, AD-Vol. 17, ASME, N.Y., 1989, pp. 89–96.
Ben-Haim, Y. and Elishakoff, I.: Non-Probabilistic Models of Uncertainty in the Buckling of Shells with General Imperfections: Theoretical Derivation of the Knockdown Factor, Journal of Applied Mechanics 56 (1989), pp. 403–410.
Ben-Haim, Y. and Elishakoff, I.: Convex Models of Uncertainty in Applied Mechanics, Elsevier Publ., Amsterdam, 1990.
Bernat, A., Villa, E., Bhamidipati, K., and Kreinovich, V.: Parallel Interval Computations as a Background Problem: When Processors Come and Go, in: International Conference on Interval and Computer-Algebraic Methods in Science and Engineering (Interval'94), St. Petersburg, Russia, March 7–10, 1994, Abstracts, pp. 51–53.
Bhamidipati, K.: PVM Estimates Errors Caused by Imprecise Data, in: Proceedings of the 1994 PVM Users' Group Meeting, Oak Ridge, TN, May 19–20, Center for Research on Parallel Computations, Session 2A, 1994.
Bickel, P. J. and Lehmann, E. L.: Descriptive Statistics for Nonparametric Models. 1. Introduction, Ann. Statist. 3 (1975), pp. 1045–1069.
Buchanan, B. G. and Shortliffe, E. H.: Rule-Based Expert Systems. The MYCIN Experiments of the Stanford Heuristic Programming Project, Addison-Wesley, Reading, MA, Menlo Park, CA, 1984.
Claerbout, J. R. and Muir, F.: Robust Modeling with Erratic Data, Geophysics 38 (1973), pp. 826–844.
Crain, K., Baker, M., and Kreinovich, V.: A Simple Uncertainty Estimator for Tomographic Inversions, Proc. 2nd Borehole Seismics Conference, Tohoku University, Sendai, Japan, 1993.
Dong, W. M., Chiang, W. L., and Shah, H. C.: Fuzzy Information Processing in Seismic Hazard Analysis and Decision Making, International Journal of Soil Dynamics and Earthquake Engineering 6(4) (1987), pp. 220–226.
Elishakoff, I.: Convex Versus Probabilistic Modeling of Uncertainty in Structural Dynamics, in: Petyt, M., Wolfe, H. F., and Mei, C. (eds), Structural Dynamics: Recent Advances, Elsevier Applied Science Publishers, London, 1991, pp. 3–21.
Elishakoff, I.: Essay on Reliability Index, Probabilistics Interpretation of Safety Factor, and Convex Models of Uncertainty, in: Casciati, F. and Roberts, J. B. (eds), Reliability Problems: General Principles and Applications in Mechanics of Solids and Structures, Springer Verlag, 1991, pp. 237–271.
Elishakoff, I.: Some Questions in Engineering Eigenvalue Problems in Natural Sciences, in: Albrecht, J., Collatz, L., Hagedorn, P., and Velte, W. (eds). Numerical Treatment of Eigenvalue Problems, Int. Series of Numerical Mathematics, Vol. 96, Birkhäuser Publishers, Basel, Switzerland, 1991, pp. 71–107.
Elishakoff, I.: Essay on Uncertainties in Elastic and Viscoelastic Structures: from A. M. Freudental's Criticisms to Modern Convex Modeling, Intl. Journal of Computers and Structures (1995).
Elishakoff, I. and Ben-Haim, Y.: Dynamics of a Thin Cylindrical Shell under Impact with Limited Deterministic Information on Its Initial Imperfections, Journal of Structured Safety 8 (1990), pp. 103–112.
Elishakoff, I., Cai, G. Q., and Starnes, Jr., J. H.: Non-Linear Buckling of a Column with Initial Imperfections via Stochastic and Non-Stochastic, Convex Models, Int. Journal of Non-Linear Mechanics 29 (1994), pp. 71–82.
Elishakoff, I. and Colombi, P.: Ideas of Probability and Convexity Combined for Analyzing Parameter Uncertainty, in: Schüller, G. I., Shinozuka, M., and Yao, J. (eds), Proceedings of the 6th Intl. Conference on Structural Safety and Reliability, Balkema Publ., Rotterdam, 1994, Vol. 2, pp. 109–113.
Elishakoff, I. and Fang, J. J.: A New Safety Factor Based on Convex Modeling, Journal of Structural Safety (1995).
Elishakoff, I., Gana-Snvili, Y., and Givoli, D.: Treatment of Uncertain Imperfections as a Convex Optimization Problem. in: Esteva, L. and Ruiz, S. E. (eds), Proceedings of the Sixth Intl. Conference on Applications of Statistics and Probability in Civil Engineering, Mexico, 1991, Vol. 1, pp. 150–157.
Fuller, W. A.: Measurement Error Models, J. Wiley & Sons, New York, 1987.
Gerstenberger, M. C.: Development of New Techniques in Crosswell Seismic Travel Time Tomography, M.S. Thesis, Department of Geological Sciences, University of Texas at El Paso, El Paso, TX, 1994.
Givoli, D., Elishakoff, I., and Stavsky, Y.: A Boundary-Perturbation Finite-Element Method for Plane Elasticity Problems, Computer Methods in Applied Mechanics and Engineering 96 (1992), pp. 45–63.
Gomberg, J. S., Shedlock, K. M., and Roecker, S. W.: The Effect of S-Wave Arrival Times on the Accuracy of Hypocenter Estimation, Bull. Seismol. Soc. Am. 80 (1990), pp. 1605–1628.
Hammer, R., Hocks, M., Kulisch, U., and Ratz, D.: Numerical Toolbox for Verified Computing. I. Basic Numerical Problems, Springer Verlag, Heidelberg, N.Y., 1993.
Hansen, E. R.: Global Optimization Using Interval Analysis, Marcel Dekker, N.Y., 1992.
Hearn, T. M.: Pn Travel Times in Southern California, J. Geophys. Res. 89 (1984), pp. 1843–1855.
Hearn, T. M. and Ni, J. F.: Pn Velocities Beneath Continental Collision Zones: the Turkish-Iranian Plateau, Geophys. J. Int. 117 (1994), pp. 273–283.
Jackson, D. D.: The Use of A Priori Data to Resolve Non-Uniqueness in Linear Inversion, Geophys. J. R. Astron. Soc. 57 (1979), pp. 137–157.
Kirillova, I. S., Kreinovich, V., and Solopchenko, G. N.: Distribution-Independent Estimators of Error Characteristics of Measuring Instruments, Measuring Techniques 32(7) (1989), pp. 621–627.
Köylüoglu, H. U., Cakmak, A. S., and Nielsen, S. R. K.: Applications of Interval Mapping in Mechanics for Structural Uncertainties and Pattern Loading, Department of Building Technology and Structural Engineering. Aaborg University, Paper No. 121, 1994.
Kreinovich, V.: A General Approach to Analysis of Uncertainty in Measurements, in: Proceedings of the the 3-rd USSR National Symposium on Theoretical Metrology, Leningrad, Mendeleev Metrology Institute (VNIIM), 1986, pp. 187–188 (in Russian).
Kreinovich, V., Bernat, A., Villa, E., and Mariscal, Y.: Parallel Computers Estimate Errors Caused by Imprecise Data, Interval Computations 2 (1991), pp. 21–46.
Kreinovich, V., Nemir, D., and Gutierrez, E.: Applications of Interval Computations to Earthquake-Resistant Engineering: How to Compute Derivatives of Interval Functions Fast, Interval Computations 1(2) (1995), pp. 141–172.
Kreinovich, V. and Pavlovich, M. I.: Error Estimate of the Result of Indirect Measurements by Using a Calculational Experiment, Measurement Techniques 28(3) (1985), pp. 201–205.
Li, Y. W., Elishakoff, I., Starnes, Jr., J. H., and Shinozuka, M.: Prediction of Natural Frequency and Buckling Load Variability by Convex Modeling, Fields Institute Communications. American Math. Society, 1995.
Moore, R.: Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.
Morgenstein, D. and Murphy, J.: An Application of Parallel Interval Techniques to Geophysics, in: Extended Abstracts of APIC'95: International Workshop on Applications of Interval Computations, El Paso, TX. Febr. 23–25, 1995, Reliable Computing (1995), Supplement, p. 155.
Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.
Novitskii, P. V. and Zograph, I. A.: Estimating the Measurement Errors, Energoatomizdat, Leningrad, 1991 (in Russian).
Parker, R. L.: Geophysical Inverse Theory, Princeton University Press, Princeton, NJ, 1994.
Petroy, D. E. and Wines, D. A.: Historical Seismicity and Implications for a Diffuse Plate Convergence in the Northeast Indian Ocean, J. Geoph. Res. 94 (1989), pp. 12301–12319.
Phillips, W. S.: Personal Communication, 1993.
Press, F.: Earth Models Obtained by Monte-Carlo Inversion, J. Geoph. Res. 73 (1968), pp. 5223–5234.
Rabinovich, S.: Measurement Errors: Theory and Practice, American Institute of Physics, N.Y., 1993.
Scales, J. A., Gersztenkorn, A., and Treitel, S.: Fast l R Solutions of Large, Sparse, Linear Systems: Application to Seismic Travel Time Tomography, J. Comput. Physics 75 (1988), pp. 314–333.
Shevlyakov, G. L. and Vil'chevskiy, N. O.: On the Choice of an Optimization Criterion under Uncertainty in Interval Computations—Nonstochastic Approach, in: Extended Abstracts of APIC'95: International Workshop on Applications of Interval Computations, El Paso, TX, Febr. 23–25, 1995, Reliable Computing (1995), Supplement, pp. 188–189.
Shortliffe, E. H.: Computer-Based Medical Consultation: MYCIN, Elsevier, New York, 1976.
Stewart, R. R.: Exploration Seismic Tomography: Fundamentals, in: Domenico, S. N. (ed.), Course Notes Series, Vol. 3, Soc. of Explor. Geophys., Tulsa, Oklahoma, 1991.
Tarantola, A.: Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, Elsevier, Amsterdam, 1987.
Tarantola, A. and Valette, B.: Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion, Rev. Geophys. 20 (1982), pp. 219–232.
Villa, E., Bernat, A., and Kreinovich, V.: Estimating Errors of Indirect Measurement on Realistic Parallel Machines: Routings on 2-D and 3-D Meshes That Are Nearly Optimal, Interval Computations 4 (1993), pp. 154–175.
Wadsworth, Jr., H. M. (ed.): Handbook of Statistical Methods for Engineers and Scientists, McGraw-Hill, N.Y., 1990.
Zimmerman, H. H. and Zysno, P.: Latent Connectives in Human Decision Making, Fuzzy Sets and Systems 4 (1980), pp. 37–51.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Doser, D.I., Crain, K.D., Baker, M.R. et al. Estimating Uncertainties for Geophysical Tomography. Reliable Computing 4, 241–268 (1998). https://doi.org/10.1023/A:1009903529250
Issue Date:
DOI: https://doi.org/10.1023/A:1009903529250