Skip to main content
Log in

Finding All Solutions of Nonlinear Equations Using Linear Combinations of Functions

  • Published:
Reliable Computing

Abstract

As a computational method to find all solutions of nonlinear equations, interval analysis is well-known. In order to improve the computational efficiency of interval analysis, it is necessary to develop a powerful test for nonexistence of a solution in a given region. In this paper, a new nonexistence test is proposed which is more powerful than the conventional test. The basic idea proposed here is to apply the conventional test to linear combinations of functions. Effective linear combinations are proposed which make the nonexistence test very powerful. Using the proposed techniques, all solutions of nonlinear equations (including a system of 100 nonlinear equations and a system with strong nonlinearity which describes a transistor circuit) could be found very efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alefeld, G. and Herzberger, J.: A Quadratically Convergent Krawczyk-Like Algorithm, SIAM J. Numer. Anal. 20(1) (1983), pp. 210-219.

    Google Scholar 

  2. Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic Press, New York, 1983.

    Google Scholar 

  3. Alefeld, G. and Potra, F.: A New Class of Interval Methods with Higher Order of Convergence, Computing 42(1) (1989), pp. 69-80.

    Google Scholar 

  4. Allgower, E. and Georg, K.: Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations, SIAM Rev. 22(1) (1980), pp. 28-85.

    Google Scholar 

  5. Hansen, E. R.: A Globally Convergent Interval Method for Computing and Bounding Real Roots, BIT 18(4) (1978), pp. 415-424.

    Google Scholar 

  6. Hansen, E. R. and Sengupta, S.: Bounding Solutions of Systems of Equations Using Interval Analysis, BIT 21(2) (1981), pp. 203-211.

    Google Scholar 

  7. Kashiwagi, M.: Interval Arithmetic with Linear Programming—Extension of Yamamura's Idea, in: Proc. 1996 Int. Symp. on Nonlinear Theory and its Applications, Kochi, Japan, 7–9 October, 1996, pp. 61-64.

  8. Kearfott, R. B.: Decomposition of Arithmetic Expressions to Improve the Behavior of Interval Iteration for Nonlinear Systems, Computing 47(1) (1991), pp. 169-191.

    Google Scholar 

  9. Kearfott, R. B.: Interval Arithmetic Techniques in the Computational Solution of Nonlinear Systems of Equations: Introduction, Examples, and Comparisons, in: Allgower, E. L. and Georg, K. (eds.), Computational Solution of Nonlinear Systems of Equations (Lectures in Applied Mathematics 26), American Mathematical Society, Providence, RI, 1990, pp. 337-357.

    Google Scholar 

  10. Kearfott, R. B.: Preconditioners for the Interval Gauss-Seidel Method, SIAM J. Numer. Anal. 27(3) (1990), pp. 804-822.

    Google Scholar 

  11. Kearfott, R. B.: Some Tests of Generalized Bisection, ACM Trans. Math. Software 13(3) (1987), pp. 197-220.

    Google Scholar 

  12. Kearfott, R. B. and Kreinovich, V. (eds): Applications of Interval Computations, Kluwer Academic Publishers, Dordrecht, 1996.

    Google Scholar 

  13. Kolev, L. V.: A New Method for Global Solution of Systems of Non-linear Equations, Reliable Computing 4(2) (1998), pp. 125-146.

    Google Scholar 

  14. Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken, Computing 4 (1969), pp. 187-201.

    Google Scholar 

  15. Moore, R. E.: A Test for Existence of Solutions to Nonlinear Systems, SIAM J. Numer. Anal. 14(4) (1977), pp. 611-615.

    Google Scholar 

  16. Moore, R. E.: Methods and Applications of Interval Analysis, SIAM Studies in Applied Mathematics, Philadelphia, 1979.

    Google Scholar 

  17. Moore, R. E. and Jones S. T.: Safe Starting Regions for Iterative Methods, SIAM J. Numer. Anal. 14(6) (1977), pp. 1051-1065.

    Google Scholar 

  18. Moore, R. E. and Qi, L.: A Successive Interval Test for Nonlinear Systems, SIAM J. Numer. Anal. 19(4) (1982), pp. 845-850.

    Google Scholar 

  19. Neumaier, A.: Interval Iteration for Zeros of Systems of Equations, BIT 25(1) (1985), pp. 256-273.

    Google Scholar 

  20. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, England, 1990.

    Google Scholar 

  21. Qi, L.: A Note on the Moore Test for Nonlinear Systems, SIAM J. Numer. Anal. 19(4) (1982), pp. 851-857.

    Google Scholar 

  22. Rall, L. B.: A Comparison of the Existence Theorems of Kantorovich and Moore, SIAM J. Numer. Anal. 17(1) (1980), pp. 148-161.

    Google Scholar 

  23. Schwandt, H.: Accelerating Krawczyk-Like Interval Algorithms for the Solution of Nonlinear Systems of Equations by Using Second Derivatives, Computing 35 (1985), pp. 355-367.

    Google Scholar 

  24. Schwandt, H.: Krawczyk-Like Algorithms for the Solution of Systems of Nonlinear Equations, SIAM J. Numer. Anal. 22 (1985), pp. 792-810.

    Google Scholar 

  25. Shearer, J. M. and Wolfe, M. A.: An Improved Form of the Krawczyk-Moore Algorithm, Applied Math. Comp. 17 (1985), pp. 229-239.

    Google Scholar 

  26. Shearer, J. M. and Wolfe, M. A.: Some Computable Existence, Uniqueness, and Convergence Tests for Nonlinear Systems, SIAM J. Numer. Anal. 22(6) (1985), pp. 1200-1207.

    Google Scholar 

  27. Tadeusiewicz, M.: DC Analysis of Circuits with Idealized Diodes Considering Reverse Bias Breakdown Phenomenon, IEEE Trans. Circuits and Systems-I 44(4) (1997), pp. 312-326.

    Google Scholar 

  28. Wolfe, M. A.: A Modification of Krawczyk's Algorithm, SIAM J. Numer. Anal. 17 (1980), pp. 376-379.

    Google Scholar 

  29. Yamamura, K.: Finding All Solutions of Piecewise-Linear Resistive Circuits Using Simple Sign Tests, IEEE Trans. Circuits and Systems-I 40(8) (1993), pp. 546-551.

    Google Scholar 

  30. Yamamura, K. and Horiuchi, K.: A Globally and Quadratically Convergent Algorithm for Solving Nonlinear Resistive Networks, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 9(5) (1990), pp. 487-499.

    Google Scholar 

  31. Yamamura, K., Kawata, H., and Tokue, A.: Interval Solution of Nonlinear Equations Using Linear Programming, BIT 38(1) (1998), pp. 186-199.

    Google Scholar 

  32. Yamamura, K. and Mishina, M.: An Algorithm for Finding All Solutions of Piecewise-Linear Resistive Circuits, Int. J. Circuit Theory and Applications 24(2) (1996), pp. 223-231.

    Google Scholar 

  33. Yamamura, K. and Nishizawa, M.: Finding All Solutions of a Class of Nonlinear Equations Using an Improved LP Test, Japan J. Industrial and Applied Math. 16(3) (1999), pp. 349-368.

    Google Scholar 

  34. Yamamura, K. and Ochiai, M.: An Efficient Algorithm for Finding All Solutions of Piecewise-Linear Resistive Circuits, IEEE Trans. Circuits and Systems-I 39(3) (1992), pp. 213-221.

    Google Scholar 

  35. Yamamura, K. and Ohshima, T.: Finding All Solutions of Piecewise-Linear Resistive Circuits Using Linear Programming, IEEE Trans. Circuits and Systems-I 45(4) (1998), pp. 434-445.

    Google Scholar 

  36. Yamamura, K., Sekiguchi, T., and Inoue, Y.: A Fixed-Point Homotopy Method for Solving Modified Nodal Equations, IEEE Trans. Circuits and Systems-I 46(6) (1999), pp. 654-665.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamura, K. Finding All Solutions of Nonlinear Equations Using Linear Combinations of Functions. Reliable Computing 6, 105–113 (2000). https://doi.org/10.1023/A:1009956920204

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009956920204

Keywords

Navigation