Skip to main content
Log in

Formal specification of image schemata -- a step towards interoperability in geographic information systems

  • Published:
Spatial Cognition and Computation

Abstract

The formal specification of spatial objects and spatial relations is at the core of geographic data exchange and interoperability for geographic information systems (GIS). It is necessary that the representation of such objects and relations comes close to how people use them in their everyday lives, i.e., that these specifications are built upon elements of human spatial cognition. Image schemata have been suggested as highly abstract and structured mental patterns to capture spatial and similar physical as well as metaphorical relations between objects in the experiential world. We assume that image-schematic details for large-scale (geographic) space are potentially different from image-schematic details for small-scale (table-top) space. This paper reviews methods for the formal description of spatial relations, integrates them in a categorical view, and applies the methods arrived at to formally specify image schemata for large-scale (LOCATION, PATH, REGION, and BOUNDARY) as well as small-scale (CONTAINER, SURFACE, and LINK) space. These specifications should provide a foundation for further research on formalizing elements of human spatial cognition for interoperability in GIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandroff, P. (1961). Elementary Concepts of Topology. New York: Dover Publications.

    Google Scholar 

  • Asperti, A. and Longo, G. (1991). Categories, Types and Structures-An Introduction to Category Theory for the Working Computer Scientist. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Barr, M. and Wells, C. (1990). Category Theory for Computing Science. London: Prentice Hall.

    Google Scholar 

  • Barrow, J. (1992). Pi in the Sky. Counting, Thinking and Being.New York: Oxford University Press.

    Google Scholar 

  • Bird, R. and Moor, O.D. (1997). Algebra of Programming. London: Prentice Hall.

    Google Scholar 

  • Bird, R. and Wadler, P. (1988). Introduction to Functional Programming. Hemel Hempstead (UK): Prentice Hall International.

    Google Scholar 

  • Bowerman, M. (1996). Learning How to Structure Space for Language: A Crosslinguistic Perspective. In P. Bloom et al. (eds.), Language and Space(pp. 385–436). Cambridge, MA: MIT Press.

    Google Scholar 

  • Buehler, K. and McKee, L. (eds.) (1996). The OpenGIS Guide-An Introduction to Interoperable Geoprocessing. Wayland, MA: The OGIS Project Technical Committee of the Open GIS Consortium, Wayland.

    Google Scholar 

  • Burrough, P. (1996). Natural Objects with Indeterminate Boundaries. In P. Burrough and A. Frank (eds.), Geographic Objects with Indeterminate Boundaries. GISDATA Series(pp. 3–28). London: Taylor and Francis.

    Google Scholar 

  • Burrough, P. and Frank, A. (eds.) (1996). Geographic Objects with Indeterminate Boundaries. GISDATA Series II. London: Taylor & Francis.

    Google Scholar 

  • Campari, I. and Frank, A. (1995). Cultural Differences and Cultural Aspects in GIS. In T. Nyerges, D. Mark, R. Laurini and M. Egenhofer (eds.), Cognitive Aspects of Human-Computer Interaction for Geographic Information Systems(pp. 249–266). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Chevallier, J. (1981). Land Information Systems-a Global and System Theoretique Approach. In FIG International Federation of Surveyors, Montreux, Switzerland, paper 301.2.

  • Clocksin, W. and Mellish, C. (1981). Programming in Prolog. Berlin: Springer-Verlag.

    Google Scholar 

  • Couclelis, H. (1992). People Manipulate Objects (but Cultivate Fields): Beyond the Raster-Vector Debate in GIS. In A. Frank, I. Campari, and U. Formentini (eds.), Theories and Methods of Spatio-Temporal Reasoning in Geographic Space. Lecture Notes in Computer Science, 639 (pp. 65–77). Berlin: Springer-Verlag.

    Google Scholar 

  • Date, C. (1986). An Introduction to Database Systems. Reading, MA: Addison-Wesley Publishing Company.

    Google Scholar 

  • Dijkstra, E. (1959). A Note on Two Problems in Connection with Graphs. Numerische Mathematik(1): 269–271.

  • Egenhofer, M. (1994). Deriving the Composition of Binary Topological Relations. Journal of Visual Languages and Computing 5(2): 133–149.

    Google Scholar 

  • Egenhofer, M. (1989). Spatial Query Languages. Ph.D. Thesis, Department of Surveying Engineering, University of Maine, Orono, ME, U.S.A.

  • Egenhofer, M. (1992). Why not SQL! International Journal of Geographical Information Systems 6(2): 71–85.

    Google Scholar 

  • Egenhofer,M. and Mark, D. (1995). Naive Geography. In A. Frank and W. Kuhn (eds.), Spatial Information Theory-A Theoretical Basis for GIS. Lecture Notes in Computer Science 988 (pp. 1–15). Berlin: Springer-Verlag.

    Google Scholar 

  • Egenhofer, M. and Rodríguez, A. (1999). Relation Algebras over Containers and Surfaces: An Ontological Study of a Room Space. Spatial Cognition and Computation(in press).

  • Frank, F. (1991a). Qualitative Spatial Reasoning with Cardinal Directions. In 7. Österreichische Artificial-Intelligence-Tagung(pp. 157–167). Wien: Österreich.

    Google Scholar 

  • Frank, A. (1991b). Qualitative Spatial Reasoning about Cardinal Directions. In D. Mark and D. White (eds.), Auto-Carto 10, ACSM-ASPRS(pp. 148–167). Baltimore.

  • Frank, A. (1992). Qualitative Spatial Reasoning about Distances and Directions in Geographic Space. Journal of Visual Languages and Computing 1992(3): 343–371.

    Google Scholar 

  • Frank, A. (1994). Qualitative temporal reasoning in GIS-Ordered time Scales. Technical University Vienna, Dept. of Geoinformation, Technical Report.

  • Frank, A. (1996a). An Object-Oriented, Formal Approach to the Design of Cadastral Systems. In M. Kraak and M. Molenaar (eds.), 7th Int. Symposium on Spatial Data Handling, SDH '96(pp. 5A.19–5A.35). Delft, The Netherlands.

  • Frank, A. (1996b). Qualitative Spatial Reasoning: Cardinal Directions as an Example. IJGIS 10(3): 269–290.

    Google Scholar 

  • Frank, A. (1998). Specifications for Interoperability: Formalizing Spatial Relations 'In', 'Auf' and 'An' and the Corresponding Image Schemata 'Container', 'Surface' and 'Link'. In 1. Agile-Conference. Enschede, The Netherlands: ITC.

    Google Scholar 

  • Frank, A. and Raubal, M. (1998). Specifications for Interoperability: Formalizing Image Schemata for Geographic Space. In 8th Int. Symposium on Spatial Data Handling, SDH '98. Vancouver, Canada.

  • Frank, A., Palmer, B. and Robinson, V. (1986). Formal Methods for Accurate Definition of Some Fundamental Terms in Physical Geography. In D. Marble (ed.), Second International Symposium on Spatial Data Handling(pp. 583–599). Seattle,WA.

  • Freksa. C. (1991). Qualitative Spatial Reasoning. In D. Mark and A. Frank (eds.), Cognitive and Linguistic Aspects of Geographic Space. NATO ASI Series D: Behavioural and Social Sciences (pp. 361–372). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Freundschuh. S. and Sharma, M. (1996). Spatial Image Schemata, Locative Terms and Geographic Spaces in Children's Narratives: Fostering Spatial Skills in Children. Cartographica, Monograph 46, Orienting Ourselves in Space 32(2): 38–49.

    Google Scholar 

  • Gibson, J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton Mifflin.

    Google Scholar 

  • Giunchiglia, F. and Walsh, T. (1992). A Theory of Abstraction. Istituto per la Ricerca Scientifica e Tecnologica, Trento, Italy, Technical Report 9001–14.

  • Hayes, P. (1977). In Defense of Logic. IJCAI 1: 559–565.

    Google Scholar 

  • Hayes, P. (1978). The Naive Physics Manifesto. In D. Mitchie (ed.), Expert Systems in the Microelectronic Age(pp. 242–270). Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Hayes, P. (1985). The Second Naive Physics Manifesto. In J. Hobbs and R. Moore (eds.), Formal Theories of the Commonsense World(pp. 1–36). Norwood, N.J.: Ablex Publishing Corp.

    Google Scholar 

  • Hernández, D. (1991). Relative Representation of Spatial Knowledge: The 2-D Case. In D. Mark and A. Frank (eds.), Cognitive and Linguistic Aspects of Geographic Space: An Introduction(pp. 373–386). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Hernández, D., Clementini, E. and Di Felice, P. (1995). Qualitative Distances. In A. Frank and W. Kuhn (eds.), Spatial Information Theory-A Theoretical Basis for GIS (Proceedings of the International Conference COSIT '95). Lecture Notes in Computer Science 988 (pp. 45–57). Berlin-Heidelberg: Springer-Verlag.

    Google Scholar 

  • Herring, J., Egenhofer, M. and Frank, A. (1990). Using Category Theory to Model GIS Applications. In K. Brassel (ed.), 4th International Symposium on Spatial Data Handling(pp. 820–829). Zurich, Switzerland.

  • Herskovits, A. (1986). Language and Spatial Cognition-An Interdisciplinary Study of the Propositions in English. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hobbs, J. and Moore, R. (eds.) (1985). Formal Theories of the Commonsense World. Norwood, NJ: Ablex Publishing Corp.

    Google Scholar 

  • Johnson, M. (1987). The Body in the Mind: The Bodily Basis of Meaning, Imagination, and Reason. Chicago: University of Chicago Press.

    Google Scholar 

  • Jones, M. (1991). An Introduction to Gofer. Department of Computer Science, Yale University, Technical Report.

  • Jones, M. (1994). The Implementation of the Gofer Functional Programming System. Department of Computer Science, Yale University, Technical Report YALEU/DCS/RR-1030.

  • Jordan, T., Raubal, M., Gartrell, B. and Egenhofer, M. (1998) An Affordance-Based Model of Place in GIS. In 8th Int. Symposium on Spatial Data Handling, SDH '98. Vancouver, Canada.

  • Knauff, M., Rauh, R. and Schlieder, C. (1995). PreferredMental Models in Qualitative Spatial Reasoning: A Cognitive Assessment of Allen's Calculus. In 17th Annual Conference of the Cognitive Science Society(pp. 200–205). Hillsdale.

  • Kuhn, W. (1993). Metaphors Create Theories for Users. In A. Frank and I. Campari (eds.), Spatial Information Theory. Lecture Notes in Computer Science 716 (pp. 366–376). Springer.

  • Kuhn, W. (1994). Defining Semantics for Spatial Data Transfers. In T. Waugh and R. Healey (eds.), 6th International Symposium on Spatial Data Handling(pp. 973–987). Edinburgh, UK.

  • Kuhn, W. and Frank, A. (1991). A Formalization of Metaphors and Image-Schemas in User Interfaces. In D. Mark and A. Frank (eds.), Cognitive and Linguistic Aspects of Geographic Space. NATO ASI Series(pp. 419–434). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Kuhn, W. and Frank, A. (1997). The Use of Functional Programming in the Specification and Testing Process. In M. Goodchild, M. Egenhofer, R. Fegeas and C. Kottman (eds.), Int. Conference and Workshop on Interoperating Geographic Information Systems, Santa Barbara, CA, USA (3.-6. Dec. 1997).

  • Lakoff, G. (1987). Women, Fire, and Dangerous Things-What Categories Reveal about the Mind. Chicago: The University of Chicago Press.

    Google Scholar 

  • Lakoff, G. and Johnson, M. (1980) Metaphors We Live By. Chicago: University of Chicago Press.

    Google Scholar 

  • Liang, S., Hudak, A. and Jones, A. (1995) Monad Transformers and Modular Interpreters. In ACM Symposium on Principles of Programming Languages.

  • Lynch, K. (1960). The Image of the City. Cambridge: MIT Press.

    Google Scholar 

  • Maddux, R. (1991). The Origin of Relation Algebras in the Development and Axiomatization of the Calculus of Relations. Studia Logica 50(3–4): 421–455.

    Google Scholar 

  • Mark. D. (1989). Cognitive Image-Schemata for Geographic Information: Relations to User Views and GIS Interfaces. In GIS/LIS '89(pp. 551–560). Orlando, Florida, November.

  • Mark, D. (1993). Toward a Theoretical Framework for Geographic Entity Types. In A. Frank and I. Campari (eds.), Spatial Information Theory: Theoretical Basis for GIS. Lecture Notes in Computer Science 716 (pp. 270–283). Heidelberg-Berlin: Springer Verlag.

    Google Scholar 

  • Mark, D. (1997). Geographic Cognition. Workshop, UCGIS Summer Assembly, Bar Harbor, Maine, U.S.A., Technical Report.

  • Mark, D., Comas, D., Egenhofer, M., Freundschuh, S., Gould, M. and Nunes, J. (1995). Evaluating and Refining Computational Models of Spatial Relations through Cross-Linguistic Human-Subjects Testing. In A. Frank and W. Kuhn (eds.), Spatial Information Theory-A Theoretical Basis for GIS. Lecture Notes in Computer Science 988 (pp. 553–568). Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Mark, D. and Frank, A. (1996). Experiential and Formal Models of Geographic Space. Environment and Planning, Series B 23: 3–24.

    Google Scholar 

  • McCarthy, J. (1980). Circumscription-A Form of Non-Monotonic Reasoning. Artificial Intelligence 13: 27–39.

    Google Scholar 

  • McCarthy, J. (1985). Epistemological Problems of Artificial Intelligence. In R. Brachman and H. Levesque (eds.), Readings in Knowledge Representation(pp. 24–30). Los Altos, CA: Morgan Kaufman Publishers.

    Google Scholar 

  • McCarthy, J. (1986). Applications of Circumscription to Formalizing Common Sense Knowledge. Artificial Intelligence 28: 89–116.

    Google Scholar 

  • Montello, D. (1993). Scale and Multiple Psychologies of Space. In A. Frank and I. Campari (eds.), Spatial Information Theory: Theoretical Basis for GIS. Lecture Notes in Computer Science 716 (pp. 312–321). Heidelberg-Berlin: Springer Verlag.

    Google Scholar 

  • Montello, D. (1995). How Significant Are Cultural Differences in Spatial Cognition? In A. Frank and W. Kuhn (eds.), Spatial Information Theory-A Theoretical Basis for GIS. Lecture Notes in Computer Science 988 (pp. 485–500). Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Norman, D. (1988). The Design of Everyday Things. New York: Doubleday.

    Google Scholar 

  • Papadias, D. and Sellis, T. (1994). A Pictorial Language for the Retrieval of Spatial Relations from Image Databases. In 6th International Symposium on Spatial Data Handling (SDH). Edinburgh, UK.

  • Peterson, J., Hammond, K., Augustsson, L., Boutel, B., Burton, W., Fasel, J., Gordon, A., Hughes, J., Hudak, P., Johnsson, T., Jones, M., Meijer, E., Jones, S., Reid, A. and Wadler, P. (1997). The Haskell 1.4 Report. http://haskell.org/report/index.html

  • Rashid, A., Shariff, B., Egenhofer, M. and Mark, D. (1998) Natural-Language Spatial Relations between Linear and Areal Objects: the Topology and Metric of English-Language Terms. IJGIS 12(3): 215–246.

    Google Scholar 

  • Raubal, M. (1997). Structuring Space with Image Schemata. Master's Thesis, University of Maine, Orono, ME, U.S.A.

  • Raubal, M., Egenhofer, M., Pfoser, D. and Tryfona, N. (1997) Structuring Space with Image Schemata:Wayfinding in Airports as a Case Study. In S. Hirtle and A. Frank (eds.), Spatial Information Theory-A Theoretical Basis for GIS (International Conference COSIT '97). Lecture Notes in Computer Science, Vol. 1329 (pp. 85–102). Berlin-Heidelberg: Springer-Verlag.

    Google Scholar 

  • Raubal, M. and Egenhofer, M. (1998). Comparing the Complexity of Wayfinding Tasks in Built Environments. Environment & Planning B, 25(6): 895–913.

    Google Scholar 

  • Reiter, R. (1984). Towards a Logical Reconstruction of Relational Database Theory. In M. Brodie, M. Mylopolous, and L. Schmidt (eds.), On Conceptual Modelling, Perspectives from Artificial Intelligence, Databases, and Programming Languages(pp. 191–233). New York: Springer Verlag.

    Google Scholar 

  • Rodríguez, A. (1997). Image-Schemata-Based Spatial Inferences: The Container-Surface Algebra for Solid Objects. Master's Thesis, University of Maine, Orono, ME, U.S.A.

  • Rodríguez, A. and Egenhofer, M. (1997). Image-Schemata-Based Spatial Inferences: The Container-Surface Algebra. In S. Hirtle and A. Frank (eds.), Spatial Information Theory-A Theoretical Basis for GIS (International Conference COSIT '97). Lecture Notes in Computer Science, Vol. 1329 (pp. 35–52). Berlin-Heidelberg: Springer-Verlag.

    Google Scholar 

  • Rosch, E. (1973a). Natural Categories. Cognitive Psychology 4: 328–350.

    Google Scholar 

  • Rosch, E. (1973b). On the Internal Structure of Perceptual and Semantic Categories. In T. Moore (ed.), Cognitive Development and the Acquisition of Language. New York: Academic Press.

    Google Scholar 

  • Rosch, E. (1978). Principles of Categorization. In E. Rosch and B. Lloyd (eds.), Cognition and Categorization. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Schlieder, C. (1995). Reasoning about Ordering. In A. Frank and W. Kuhn (eds.), Spatial Information Theory-A Theoretical Basis for GIS. Lecture Notes in Computer Science 988 (pp. 341–350). Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Schroeder, E. (1895). Vorlesungen ueber die Algebra der Logik (Exakte Logik). Leipzig: Teubner.

    Google Scholar 

  • Sedgewick, R. (1983). Algorithms. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Smith, B. (1995). On Drawing Lines on a Map. In A. Frank and W. Kuhn (eds.), Spatial Information Theory-A Theoretical Basis for GIS. Lecture Notes in Computer Science 988 (pp. 475–484). Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Soja, E. (1971). The Political Organization of Space. Association of American Geographers, Commission on College Geography, Washington, D.C., Technical Report Resource Paper No. 8.

  • Tarski, A. (1941). On the Calculus of Relations. The Journal of Symbolic Logic 6(3): 73–89.

    Google Scholar 

  • Timpf, S., Volta, G., Pollock, D. and Egenhofer, M. (1992). A Conceptual Model of Wayfinding Using Multiple Levels of Abstractions. In A. Frank, I. Campari, and U. Formentini (eds.), Theories and Methods of Spatio-Temporal Reasoning in Geographic Space. Lecture Notes in Computer Science 639 (pp. 348–367). Heidelberg-Berlin: Springer Verlag.

    Google Scholar 

  • Voisard, A. and Schweppe, H. (1994). A Multilayer Approach to the Open GIS Design Problem. In N. Pissinou and K. Makki (eds.), 2nd ACM-GIS Workshop, New York.

  • Voisard, A. and Schweppe, H. (1997). Abstraction and Decomposition in Open GIS. IJGIS(special issue).

  • Wadler, P. (1997). How to Declare an Imperative. ACM Computing Surveys 29(3): 240–263.

    Google Scholar 

  • Walters, R. (1991). Categories and Computer Science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wierzbicka, A. (1996). Semantics-Primes and Universals. Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, A.U., Raubal, M. Formal specification of image schemata -- a step towards interoperability in geographic information systems. Spatial Cognition and Computation 1, 67–101 (1999). https://doi.org/10.1023/A:1010004718073

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010004718073

Navigation