Skip to main content
Log in

Stability in Linear Programming Models: An Index Set Approach

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Arbitrary perturbations of arbitrary coefficients in linear programming models on the canonical form are studied. Perturbations that preserve stability (lower semi-continuity of the feasible set mapping) are characterized in terms of subsets of the index set of the decision variable. A necessary condition for stability is used to formulate a method for identification of unstable perturbations. Instability is illustrated in various situations including multi-level decision making, descriptions of locally and globally optimal parameters in linear parametric programming, and a marginal value formula for models with a convex objective and linear canonical constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer, Nonlinear Parametric Optimization (Akademie–Verlag, Berlin, 1982).

    Google Scholar 

  2. A. Ben–Israel, A. Ben–Tal and S. Zlobec, Optimality in Nonlinear Programming: A Feasible Directions Approach (Wiley, New York, 1981).

    Google Scholar 

  3. R.C. Carlson, J.V. Jucker and D.H. Kropp, Less nervous MRP systems; a dynamic economic lot–sizing approach, Management Science 25 (1979) 754–761.

    Google Scholar 

  4. J.W. Daniel, Remarks on perturbations in linear inequalities, SIAM J. Numerical Analysis 12 (1975) 770–772.

    Google Scholar 

  5. I. Dragan, Assupra unei klase de probleme de programmare parametrica, Rev. Roum. Mat. Pur. Appl. 11(4) (1966) 447–451.

    Google Scholar 

  6. A.V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming (Academic Press, New York, 1983).

    Google Scholar 

  7. C.A. Floudas and S. Zlobec, Optimality and duality in parametric convex lexicographic programming, in: [19], pp. 359–379.

  8. T. Gal, A historiogramme of parametric programming, J. Opl. Res. Soc. 31 (1980) 449–451.

    Google Scholar 

  9. T. Gal, Letter on A historiogramme on parametric programming, J. Opl. Res. Soc. 34 (1983) 162–163.

    Google Scholar 

  10. T. Gal, Postoptimal Analyses, Parametric Programming, and Related Topics: Multicriteria Decision Making, Degeneracy, Redundancy, 2nd edn. (De Gruyter, Berlin, 1995).

    Google Scholar 

  11. T. Gal Selected bibliography on degeneracy, Annals of Operations Research 46/47 (1994) 1–10.

    Google Scholar 

  12. T. Gal and H.J. Greenberg, eds., Advances in Sensitivity Analysis and Parametric Programming (Kluwer Academic, 1997).

  13. T. Gal and K. Wolf, Stability in vectormaximum problems–a survey, in: Special Issue on Multicriteria Decision Making, eds. T. Gal and B. Roy, European J. of Operational Research 25 (1986) 169–182.

  14. P. Gordan, Über die Auflösungen linearer Gleichungen mit reelen coefficienten, Mathematische Annalen 6 (1873) 23–28.

    Google Scholar 

  15. W.W. Hogan, Point–to–set maps in mathematical programming, SIAM Review 15 (1973) 591–603.

    Google Scholar 

  16. O. Mangasarian, Nonlinear Programming (McGraw–Hill, New York, 1969).

    Google Scholar 

  17. A.S. Manne, Notes on parametric linear programming, RAND Report P–468. The Rand Corporation, Santa Monica, CA (1953).

    Google Scholar 

  18. D. Martin, On the continuity of the maximum in parametric linear programming, Journal of Optimization Theory and Applications 17 (1975) 205–210.

    Google Scholar 

  19. A. Migdalas, M. Pardalos and P. Varbrand, eds., Multi–Level Optimization (Kluwer Academic, 1997).

  20. S.M. Robinson, Stability theory for systems of inequalities. Part I: Linear systems, SIAM J. Numerical Analysis 12 (1975) 754–772.

    Google Scholar 

  21. A.N. Tikhonov and V.Y. Arsenin, Solutions of Ill–Posed Problems, Scripta Series in Mathematics (Wiley, New York, 1977).

    Google Scholar 

  22. A.N. Tikhonov, V.G. Karmanov and T.L. Rudneva, Stability of linear programming problems, in: Vychislitel'naya Matematika i Programmirovanie, Vol. XII (Moscow State University Press, 1969).

  23. M. van Rooyen and S. Zlobec, The marginal value formula on regions of stability, Optimization 27 (1993) 17–42.

    Google Scholar 

  24. H. von Stackelberg, The Theory of the Market Economy (Oxford University Press, Oxford, England, 1952).

    Google Scholar 

  25. H. Wagner and T. Whitin, Dynamic version of the economic lot size model, Management Science 8 (1958) 89–96.

    Google Scholar 

  26. J. Ward and R.E. Wendell, Approaches to sensitivity analysis in linear programming, Annals of Operations Research 27 (1990) 3–38.

    Google Scholar 

  27. A.C. Williams, Marginal values in linear programming, J. Soc. Indust. Appl. Math. 11 (1963) 82–94.

    Google Scholar 

  28. S. Zlobec, Characterizing optimality in mathematical programming models, Acta Applicandae Mathematicae 12 (1988) 113–180.

    Google Scholar 

  29. S. Zlobec, Input optimization: I. Optimal realizations of mathematical models, Mathematical Programming 31 (1985) 245–268.

    Google Scholar 

  30. S. Zlobec, Lagrange duality in partly convex programming, in: State of the Art in Global Optimization, eds. C.A. Floudas and P.M. Pardalos (Kluwer Academic, 1996) pp. 1–17.

  31. S. Zlobec, Nondifferentiable optimization: Parametric programming, in: Encyclopedia of Optimization, eds. C.A. Floudas and P.M. Pardalos (Kluwer Academic), to appear.

  32. S. Zlobec, Partly convex programming and Zermelo's navigation problems, Journal of Global Optimization 7 (1995) 229–259.

    Google Scholar 

  33. S. Zlobec, Stable parametric programming, Optimization 45 (1999) 387–416.

    Google Scholar 

  34. S. Zlobec, The marginal value formula in input optimization, Optimization 22 (1991) 341–386.

    Google Scholar 

  35. S. Zlobec, R. Gardner, and A. Ben–Israel, Regions of stability for arbitrarily perturbed convex programs, in: Mathematical Programming with Data Perturbations, eds. A.V. Fiacco, Lecture Notes in Pure and Applied Mathematics, Vol. 73 (Marcel Dekker, New York, 1982) pp. 69–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zlobec, S. Stability in Linear Programming Models: An Index Set Approach. Annals of Operations Research 101, 363–382 (2001). https://doi.org/10.1023/A:1010917903065

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010917903065

Navigation