Abstract
Accessible surface (ASA) and atomic contact (ACA) areas are powerful tools for protein structure analysis. However, their use for analysis purposes could be extended if a relationship between them and protein stability could be found. At present, this is the case only for ASAs, which have been used to assess the contribution of the hydrophobic effect to protein stability. In the present work we study whether there is a relationship between atomic contact areas and the free energy associated to atom-atom interactions. We utilise a model in which the contribution of atomic interactions to protein stability is expressed as a linear function of the accessible surface area buried between atom pairs. We assess the validity of this hypothesis, using a set of 124 lysozyme mutants (Matthews, 1995, Adv Protein Chem, 249–278) for which both the X-ray structure and the experimental stability are known. We tested this assumption for residue representations with increasing numbers of atom types. Our results indicate that for simple residue representations, with only 4 to 5 atom types, there is not a clear linear relationship between stability and buried accessible area. However, this relationship is observed for representations with 6 to 9 atom types, where gross heterogeneities in the atom type definition are eliminated. Finally, we also study a version of the linear model in which the atom- atom interactions are represented utilising a simple function for the buried accessible area, which may be useful for protein structure prediction studies.
Similar content being viewed by others
References
Richards, F.M., Ann. Rev. Biophys. Bioeng. 6 (1977) 151.
Lee, B. and Richards, F.M., J. Mol. Biol. 55 (1971) 379.
Chothia, C., Nature 248 (1974) 338.
Richards, FM., In Creighton, TM (Ed.) Protein Folding, Freeman and Company, 1992, pp. 1-58.
Dill, K.A., Biochemistry 29 (1990) 7133.
Matsumura, M., Becktel, W.J. and Matthews, BW., Nature 334 (1988) 406.
Serrano, L. and Fersht, A.R., Curr. Opin. Struc. Biol. 3 (1993) 75.
Takano, K., Yamagata, Y. and Yutani, K. A., J. Mol. Biol. 280 (1998) 749.
Eisenberg, D. and McLachlan, A.D., Nature 319 (1986) 199.
de la Cruz, X. and Fita, I., J. Appl. Crys. 24 (1991) 941.
de la Cruz, X., Reverter, J, Fita, I., J. Mol. Graphics 10 (1992) 96.
Koehl, P. and Delarue, M., Proteins: Struc. Func. Genet. 20 (1994) 264.
Delarue, M. and Koehl, P., J. Mol. Biol. 249 (1995) 675.
Kurochkina, N. and Lee, B., Protein Eng. 8 (1995) 437.
Yue, K. and Dill, K.A., Protein Sci. 5 (1996) 254.
Wallqvist, A., Jernigan, R.L. and Covell, D.G., Protein Sci. 4 (1995) 1881.
Covell, D.G. and Wallqvist, A., J. Mol. Biol. 269 (1997) 281.
Dill, K.A., Curr. Opin. Struct. Biol. 3 (1993) 99.
Vasmatzis, G. and Lee, B. Curr. Opin. Biotech. 8 (1997) 423.
Vogt, G., Woell, S. and Argos, P., J. Mol. Biol. 269 (1997) 631.
Matthews, B.W., Adv. Protein Chem. 46 (1995) 249.
Lazaridis, T., Archontis, G., Karplus, M., Adv. Protein Chem. 47 (1995) 231.
Dill, K.A and Shortle, D., Annu. Rev. Biochem. 60 (1991) 795.
Creamer, T.P., Srinivasan, R. and Rose, G.D., Biochemistry 34 (1995) 16245.
Murphy, L.R., Matubayasi, N., Payne, V.A. and Levy, R.M., Fold. Des. 3 (1998) 105.
Sen, A. and Srivastasa, M., Regression Analysis. Theory, Methods and Applications, Springer_Verlag, New York, 1990.
Wodak, S. and Janin, J. Proc. Natl. Acad. Sci. USA 77 (1980) 1736.
Furnival, G.M. and Wilson, R.B., Technometrics 16 (1974) 499.
Efron, B. And Tibshirani, R.J., An Introduction to the Bootstrap, Chapman & Hall, New York, 1993.
Ben-Naim, A., J. Chem. Phys. 107 (1997) 3698.
Zhang, C., Vasmatzis, G., Cornette, J.L. and DeLisi, C., J. Mol. Biol. 267 (1997) 707.
Rawlings, J.O., Applied Regression Analysis, Wadswoth & Brooks/Cole, 1988.
Zheng, B. and Agresti, A., Statis.Med. 19 (2000) 1771.
Tibshirani, R. and Knight, K., J.R.Statis.Soc 61 (1999) 529.
Alber, T., Dao-pin, S., Wilson, K., Wozniak, J.A., Cook, S.P. and Matthews, B.W., Nature 330 (1987) 41.
Takano, K., Yamagata, Y. and Yutani, K., J. Mol.Biol. 280 (1998) 749.
Fersht, A., Matouschek, A. and Serrano, L., J.Mol.Biol. 224 (1992) 771.
Abagyan, R. and Totrov, M., J.Mol.Biol. 235 (1994) 983.
Matthews, B.W., Nicholson, H. and Becktel, W.J., Proc.Natl.Acad.Sci.USA, 84 (1987) 6663.
Petsko, G.A. and Ringe, D., Annu.Rev.Biophys.Bioeng. 13 (1984) 331.
Lazaridis, T. and Karplus, M., J. Mol. Biol. 288 (1999) 477.
Mark, A.E. and van Gunsteren, W.F., J. Mol. Biol. 240 (1994)167.
Dill, K.A., J. Biol. Chem. 272 (1997) 701.
Tuñon, I., Silla, E., Pascual-Ahuir, J.L., Protein Eng. 5 (1992) 715.
Jackson, R.M. and Sternberg, M.J.E., Nature 366 (1993) 638.
Nicholson, H., Anderson, D.E., Dao-pin, S. and Matthews, B.W., Biochemistry 30 (1991) 9816.
Heinz, D.W., Baase, W.A. and Matthews, B.W, Proc. Natl. Acad. Sci. USA 89 (1992) 3751.
Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A., J. Am. Chem. Soc. 117 (1995) 5179.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
de la Cruz, X., Calvo, M. Use of surface area computations to describe atom–atom interactions. J Comput Aided Mol Des 15, 521–532 (2001). https://doi.org/10.1023/A:1011133332333
Issue Date:
DOI: https://doi.org/10.1023/A:1011133332333