Skip to main content

Advertisement

Log in

Use of surface area computations to describe atom–atom interactions

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Accessible surface (ASA) and atomic contact (ACA) areas are powerful tools for protein structure analysis. However, their use for analysis purposes could be extended if a relationship between them and protein stability could be found. At present, this is the case only for ASAs, which have been used to assess the contribution of the hydrophobic effect to protein stability. In the present work we study whether there is a relationship between atomic contact areas and the free energy associated to atom-atom interactions. We utilise a model in which the contribution of atomic interactions to protein stability is expressed as a linear function of the accessible surface area buried between atom pairs. We assess the validity of this hypothesis, using a set of 124 lysozyme mutants (Matthews, 1995, Adv Protein Chem, 249–278) for which both the X-ray structure and the experimental stability are known. We tested this assumption for residue representations with increasing numbers of atom types. Our results indicate that for simple residue representations, with only 4 to 5 atom types, there is not a clear linear relationship between stability and buried accessible area. However, this relationship is observed for representations with 6 to 9 atom types, where gross heterogeneities in the atom type definition are eliminated. Finally, we also study a version of the linear model in which the atom- atom interactions are represented utilising a simple function for the buried accessible area, which may be useful for protein structure prediction studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richards, F.M., Ann. Rev. Biophys. Bioeng. 6 (1977) 151.

    Google Scholar 

  2. Lee, B. and Richards, F.M., J. Mol. Biol. 55 (1971) 379.

    Google Scholar 

  3. Chothia, C., Nature 248 (1974) 338.

    Google Scholar 

  4. Richards, FM., In Creighton, TM (Ed.) Protein Folding, Freeman and Company, 1992, pp. 1-58.

  5. Dill, K.A., Biochemistry 29 (1990) 7133.

    Google Scholar 

  6. Matsumura, M., Becktel, W.J. and Matthews, BW., Nature 334 (1988) 406.

    Google Scholar 

  7. Serrano, L. and Fersht, A.R., Curr. Opin. Struc. Biol. 3 (1993) 75.

    Google Scholar 

  8. Takano, K., Yamagata, Y. and Yutani, K. A., J. Mol. Biol. 280 (1998) 749.

    Google Scholar 

  9. Eisenberg, D. and McLachlan, A.D., Nature 319 (1986) 199.

    Google Scholar 

  10. de la Cruz, X. and Fita, I., J. Appl. Crys. 24 (1991) 941.

    Google Scholar 

  11. de la Cruz, X., Reverter, J, Fita, I., J. Mol. Graphics 10 (1992) 96.

    Google Scholar 

  12. Koehl, P. and Delarue, M., Proteins: Struc. Func. Genet. 20 (1994) 264.

    Google Scholar 

  13. Delarue, M. and Koehl, P., J. Mol. Biol. 249 (1995) 675.

    Google Scholar 

  14. Kurochkina, N. and Lee, B., Protein Eng. 8 (1995) 437.

    Google Scholar 

  15. Yue, K. and Dill, K.A., Protein Sci. 5 (1996) 254.

    Google Scholar 

  16. Wallqvist, A., Jernigan, R.L. and Covell, D.G., Protein Sci. 4 (1995) 1881.

    Google Scholar 

  17. Covell, D.G. and Wallqvist, A., J. Mol. Biol. 269 (1997) 281.

    Google Scholar 

  18. Dill, K.A., Curr. Opin. Struct. Biol. 3 (1993) 99.

    Google Scholar 

  19. Vasmatzis, G. and Lee, B. Curr. Opin. Biotech. 8 (1997) 423.

    Google Scholar 

  20. Vogt, G., Woell, S. and Argos, P., J. Mol. Biol. 269 (1997) 631.

    Google Scholar 

  21. Matthews, B.W., Adv. Protein Chem. 46 (1995) 249.

    Google Scholar 

  22. Lazaridis, T., Archontis, G., Karplus, M., Adv. Protein Chem. 47 (1995) 231.

    Google Scholar 

  23. Dill, K.A and Shortle, D., Annu. Rev. Biochem. 60 (1991) 795.

    Google Scholar 

  24. Creamer, T.P., Srinivasan, R. and Rose, G.D., Biochemistry 34 (1995) 16245.

    Google Scholar 

  25. Murphy, L.R., Matubayasi, N., Payne, V.A. and Levy, R.M., Fold. Des. 3 (1998) 105.

    Google Scholar 

  26. Sen, A. and Srivastasa, M., Regression Analysis. Theory, Methods and Applications, Springer_Verlag, New York, 1990.

    Google Scholar 

  27. Wodak, S. and Janin, J. Proc. Natl. Acad. Sci. USA 77 (1980) 1736.

    Google Scholar 

  28. Furnival, G.M. and Wilson, R.B., Technometrics 16 (1974) 499.

    Google Scholar 

  29. Efron, B. And Tibshirani, R.J., An Introduction to the Bootstrap, Chapman & Hall, New York, 1993.

    Google Scholar 

  30. Ben-Naim, A., J. Chem. Phys. 107 (1997) 3698.

    Google Scholar 

  31. Zhang, C., Vasmatzis, G., Cornette, J.L. and DeLisi, C., J. Mol. Biol. 267 (1997) 707.

    Google Scholar 

  32. Rawlings, J.O., Applied Regression Analysis, Wadswoth & Brooks/Cole, 1988.

  33. Zheng, B. and Agresti, A., Statis.Med. 19 (2000) 1771.

    Google Scholar 

  34. Tibshirani, R. and Knight, K., J.R.Statis.Soc 61 (1999) 529.

    Google Scholar 

  35. Alber, T., Dao-pin, S., Wilson, K., Wozniak, J.A., Cook, S.P. and Matthews, B.W., Nature 330 (1987) 41.

    Google Scholar 

  36. Takano, K., Yamagata, Y. and Yutani, K., J. Mol.Biol. 280 (1998) 749.

    Google Scholar 

  37. Fersht, A., Matouschek, A. and Serrano, L., J.Mol.Biol. 224 (1992) 771.

    Google Scholar 

  38. Abagyan, R. and Totrov, M., J.Mol.Biol. 235 (1994) 983.

    Google Scholar 

  39. Matthews, B.W., Nicholson, H. and Becktel, W.J., Proc.Natl.Acad.Sci.USA, 84 (1987) 6663.

    Google Scholar 

  40. Petsko, G.A. and Ringe, D., Annu.Rev.Biophys.Bioeng. 13 (1984) 331.

    Google Scholar 

  41. Lazaridis, T. and Karplus, M., J. Mol. Biol. 288 (1999) 477.

    Google Scholar 

  42. Mark, A.E. and van Gunsteren, W.F., J. Mol. Biol. 240 (1994)167.

    Google Scholar 

  43. Dill, K.A., J. Biol. Chem. 272 (1997) 701.

    Google Scholar 

  44. Tuñon, I., Silla, E., Pascual-Ahuir, J.L., Protein Eng. 5 (1992) 715.

    Google Scholar 

  45. Jackson, R.M. and Sternberg, M.J.E., Nature 366 (1993) 638.

    Google Scholar 

  46. Nicholson, H., Anderson, D.E., Dao-pin, S. and Matthews, B.W., Biochemistry 30 (1991) 9816.

    Google Scholar 

  47. Heinz, D.W., Baase, W.A. and Matthews, B.W, Proc. Natl. Acad. Sci. USA 89 (1992) 3751.

    Google Scholar 

  48. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A., J. Am. Chem. Soc. 117 (1995) 5179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Cruz, X., Calvo, M. Use of surface area computations to describe atom–atom interactions. J Comput Aided Mol Des 15, 521–532 (2001). https://doi.org/10.1023/A:1011133332333

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011133332333

Navigation