Skip to main content
Log in

Comparative molecular field analysis (CoMFA) study of epothilones – tubulin depolymerization inhibitors: Pharmacophore development using 3D QSAR methods

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A three-dimensional quantitative structure-activity relationship (3D QSAR) study has been carried out on epothilones based on comparative molecular field analyses (CoMFA) using a large data set of epothilone analogs, which are potent inhibitors of tubulin depolymerization. Microtubules, which are polymers of the α/β-tubulin heterodimer, need to dissociate in order to form the mitotic spindle, a structure required for cell division. A rational pharmacophore searching method using 3D QSAR procedures was carried out and the results for the epothilones are described herein. One-hundred and sixty-six epothilone analogs and their depolymerization inhibition properties with tubulin were used as a training set. Over a thousand molecular field energies were generated and applied to generate the descriptors of QSAR equations. Using a genetic function algorithm (GFA) method, combined with a least square approach, multiple QSAR models were considered during the search for pharmacophore elements. Each GFA run resulted in 100 QSAR models, which were ranked according to their lack of fit (LOF) scores, with a total of 40 GFA runs having been performed. The 40 best QSAR equations from each run had adequate fitted correlation coefficients (R from 0.813 to 0.863) and were of sufficient statistical significance (F value from 7.2 to 10.9). The pharmacophore elements for epothilones were studied by investigating the hit frequency of descriptors (i.e. the sampling probabilities of grid points from the GFA studies) from the set of the 4000 top scoring QSAR equations. By comparing the frequency with which each grid point appeared in the QSAR equations, three candidate regions in the epothilones were proposed to be pharmacophore elements. Two of them are completely compatible with the recent model proposed by Ojima et al. [Proc. Natl. Acad. Sci. USA, 96 (1999) 4256], however, one is quite different and is necessary to accurately predict the activities of all 166 epothilone molecules used in our training set. Finally, by visualizing the 35 most probable grid points, it was found that changes related to the C6, C7, C8, C12, S20, and C21 atoms of the epothilones were highly correlated to their activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rwinsky, E.K., Cazene, L.C. and Donehower, R.C., J. Natl. Cancer Inst., 82 (1990) 1247.

    Google Scholar 

  2. Ojima, I., Kuduk, S.D. and Chakravarty, S., Adv. Med. Chem., 4 (1998) 69.

    Google Scholar 

  3. Ojima, I., Kuduk, S.D., Pera, P. and Veith, J.M., J. Med. Chem., 40 (1997) 279.

    Google Scholar 

  4. Shiff, P.B., Fant, J. and Horwitz, S.B., Nature, 277 (1979) 66.

    Google Scholar 

  5. Jordan, M.A., Toso, R.J. and Wilson, L., Proc. Natl. Acad. Sci. USA, 90 (1993) 9552.

    Google Scholar 

  6. Bollag, D.M., McQueney, P.A., Zhu, J., Hensens, O., Koupal, L., Liesch, J., Goetz, M., Lazarides, E. and Woods, C.M., Cancer Res., 55 (1995) 2325.

    Google Scholar 

  7. Kowalski, R.J., Giannakakou, P. and Hamel, E., J. Biol. Chem., 272 (1997) 2534.

    Google Scholar 

  8. Höfle, G., Bedorf, B., Gerth, K. and Reichenbach, H. (Gesellschaft für Biotechnologische Forschung, GBR), DE-B 4138042 1993 (Chem. Abstr., 120 (1993) 52841)

  9. Gerth, K., Bedorf, N., Höfle, G. and Reichenbach, H., J. Antibiot., 49 (1996) 560.

    Google Scholar 

  10. Höfle, G., Bedorf, N., Steinmetz, H., Schomburg, D., Gerth, K. and Reichenbach, H., Angew. Chem. Int. Ed. Engl., 35 (1996) 1567.

    Google Scholar 

  11. Balog, A., Meng, D., Kamenecka, T., Bertinato, P., Su, D.-S., Sorensen, E.J. and Danishefsky, S.J., Angew. Chem. Int. Ed. Engl., 35 (1996) 2801.

    Google Scholar 

  12. Su, D.-S., Meng, D., Bertinato, P., Kamenecka, T., Balog, A., Sorensen, E.J., Danishefsky, S.J., Zheng, Y.-H., Chou, T.C., He, L. and Horwig, S.B., Angew. Chem. Int. Ed. Engl., 36 (1997) 757.

    Google Scholar 

  13. Yang, Z., He, Y., Vourloumis, D., Vallberg, H. and Nicolaou, K.C., Angew. Chem. Int. Ed. Engl., 36 (1997) 166.

    Google Scholar 

  14. Nicolaou, K.C., Sarabia, F., Ninkovic, S. and Yang, Z., Angew. Chem. Int. Ed. Engl., 36 (1997) 525.

    Google Scholar 

  15. Schinzer, D., Limberg, A., Bauer, A., Böhm, O.M. and Cordes, M., Angew. Chem. Int. Ed. Engl., 36 (1997) 523.

    Google Scholar 

  16. Martin, Y.C. and Willet, P. (Eds) Designing Bioactive Molecules: Three-Dimensional Techniques and Applications, American Chemical Society, Washington, DC, 1998.

    Google Scholar 

  17. Van De Waterbeemd, H., Advanced Computer-Assisted Techniques in Drug Discovery, VCH, Weinheim, New York, Basel, Cambridge, Tokyo, 1995.

    Google Scholar 

  18. Cramer III, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1998) 5959.

    Google Scholar 

  19. Wold, S., Ruhe, A., Wold, H. and Dunn III, W.J., SIAM J. Sci. Stat. Comput., 5 (1984) 735.

    Google Scholar 

  20. Cramer, R.D., Bunce III, J.D. and Patterson, D.E., Quant. Struct.-Act. Relat., 7 (1988) 18.

    Google Scholar 

  21. Kulkarni, S.S. and Kulkarni, V.M., J. Med. Chem., 42 (1999) 373.

    Google Scholar 

  22. Holland, J. Adaptation in Artificial and Natural Systems, University of Michigan Press, Ann Arbor, MI, 1975.

    Google Scholar 

  23. Friedman, J., Multivariate Adaptive Regression Splines, Technical Report 102, Laboratory for Computational Statistics, Department of Statistics, Stanford University, Stanford, CA, 1988 (revised 1990)

    Google Scholar 

  24. Nicolaou, K.C., Vourloumis, D., Li, T., Pastor, J., Winssinger, N., He, Y., Ninkovic, S., Sarabia, F., Vallberg, H., Roschangar, F., King, N.P., Finlay, M.R.V., Giannakakou, P., Verdier-Pinard, P. and Hamel, E., Angew. Chem. Int. Ed. Engl., 36 (1997) 2093.

    Google Scholar 

  25. Nicolaou, K.C., Roschangar, F. and Vourloumis, D., Angew. Chem. Int. Ed. Engl., 37 (1998) 2014.

    Google Scholar 

  26. Halgren, T.A., J. Am. Chem. Soc., 114 (1992) 7827.

    Google Scholar 

  27. Halgren, T.A. and Nachbar, R.B., J. Compnt. Chem., 17 (1996) 587.

    Google Scholar 

  28. Halgren, T.A., J. Compnt. Chem., 20 (1999) 730.

    Google Scholar 

  29. Giannakakou, P., Gussio, R., Nogales, E., Downing, K.H., Zaharevitz, D., Bollbuck, B., Poy, G., Sackett, D., Nicolaou, K.C. and Fojo, T., Proc. Natl. Acad. Sci. USA, 97 (2000) 2904.

    Google Scholar 

  30. Sen, A. and Srivastava, M., Regression Analysis: Theory, Methods and Applications, Springer-Verlag, New York, NY, 1990.

    Google Scholar 

  31. Kachigan, S.K., Statistical Analysis: An Interdisciplinary Introduction to Univariate & Multivariate Methods, Radius Press, New York, NY, 1986.

    Google Scholar 

  32. Ojima, I., Chakravarty, S., Inoue, T., He, L., Horwitz, S.B., Kuduk, S.D. and Danishefsky, S.J., Proc. Natl. Acad. Sci. USA, 96 (1999) 4256.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.W., Briggs, J.M. Comparative molecular field analysis (CoMFA) study of epothilones – tubulin depolymerization inhibitors: Pharmacophore development using 3D QSAR methods. J Comput Aided Mol Des 15, 41–55 (2001). https://doi.org/10.1023/A:1011140723828

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011140723828

Navigation