Skip to main content
Log in

Improving Reconfigurable Systems Reliability by Combining Periodical Test and Redundancy Techniques: A Case Study

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

This paper revises and introduces to the field of reconfigurable computer systems, some traditional techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable components, based on programmable logic, in space applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Alfke and R. Padovani, “Radiation Tolerance of High-Density FPGAs,” Xilinx High Reliable Products, Internal Reports 1999, http://www.xilinx.com/products/hirel_qml.htm.

  2. K. Beauchamp and C. Yuen, Digital Methods for Signal Analysis, New York: George Allen & Unwin, 1979.

    Google Scholar 

  3. E.A. Bezerra and M.P. Gough, “A Guide to Migrating from Microprocessor to FPGA Coping with the Support Tools Limitations,” Microprocessors and Microsystems, vol. 23,no. 10, pp. 561-572, March 2000.

    Google Scholar 

  4. E.A. Bezerra, F. Vargas, and M.P. Gough, “Merging BIST and Configurable Computing Technology to Improve Availability in Space Applications,” Proc. 1st IEEE Latin American Test Workshop (LATW'00), March 2000, Rio de Janeiro, Brazil, pp. 146-151.

  5. E.A. Bezerra, M.P. Gough, and A. Buckley, “A VHDL Implementation of an On-board ACF Application Targeting FPGAs,” Proc. Military and Aerospace Applications of Programmable Logic Devices Conf. (MAPLD'99), 1999, The Johns Hopkins University, USA, pp. 290-296.

    Google Scholar 

  6. ESA, “Packet Utilisation Standard, Issue 1,” European Space Agency (ESA) PSS-07-0, Noordwijk, The Netherlands, 1992.

    Google Scholar 

  7. ESA, “Cluster: mission, payload and supporting activities,” European Space Agency (ESA) SP-1159, Noordwijk, The Netherlands, 1993.

    Google Scholar 

  8. ESA, “Development of On-Board Embedded Real-Time Systems—An Engineering Approach,” European Space Agency (ESA) STR-260, Noordwijk, The Netherlands, 1999.

    Google Scholar 

  9. A. Fukunaga, K. Hayworth, and A. Stoica, “Evolvable Hardware for Spacecraft Autonomy,” NASA JPL Technical Reports, Snowmass, Colorado, USA, 1998. http://techreports.jpl.nasa.gov/.

    Google Scholar 

  10. M.P. Gough, “Particle Correlator Instruments in Space: Performance Limitations Successes, and the Future,” American Geophysics Union, Santa Fe Chapman Conf., USA, 1995.

  11. K. Huang and F. Lombardi, “An Approach to Testing Programmable/Configurable Field Programmable Gate Arrays,” Proc. 1996 IEEE VLSI Test Symp., 1996, pp. 450-455.

  12. IEEE, “Draft Standard For VHDL Register Transfer Level Synthesis,” IEEE, USA, 1998.

    Google Scholar 

  13. F. Kocan and D.G. Saab, “Dynamic Fault Diagnosis on Reconfigurable Hardware,” Proc. ACM/SIGDA Design Automation Conference (DAC'99), 1999, New Orleans, Louisiana, pp. 389-395.

  14. J. Lach, W.H. Mangione-Smith, and M. Potkonjak, “Efficiently Supporting Fault-Tolerance in FPGAs,” Proc. ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays (FPGA'98), Feb. 1998, Monterey, California, pp. 132-141.

  15. J. Lach, W.H. Mangione Smith, and M. Potkonjak, “Low Overhead Fault-Tolerant FPGA Systems,” IEEE Trans. VLSI Systems, vol. 6,no. 2, pp. 212-221, 1998.

    Google Scholar 

  16. W. Lawrenz, CAN System Engineering—From Theory to Practical Applications, New York: Springer-Verlag, 1997.

    Google Scholar 

  17. G. Lum and G. Vandenboom, “Single Event Effects Testing of Xilinx FPGAs,” Xilinx High Reliable Products, Internal Report, 1999, http://www.xilinx.com/products/hirel_qml.htm.

  18. O. Mattias, M. Ohlsson, P. Dyreklev, K. Johansson, and P. Alfke, “Neutron Single Event Upsets in SRAM-Based FP-GAs,” Xilinx High Reliable Products, Internal Report, 1999, http://www.xilinx.com/products/hirel_qml.htm.

  19. W.H. Mangione-Smith, B. Hutchings, D. Andrews, A. DeHon, C. Ebeling, R. Hartenstein, O. Mencer, J. Morris, K. Palem, V.K. Prasanna, and H.A.E. Spaanenburg, “Seeking Solutions in Configurable Computing,” Computer, vol. 30,no. 12, pp. 38-43, Dec. 1997.

    Google Scholar 

  20. N. Muscettola, P.P. Nayak, B. Pell, and B. Williams, “Remote Agent: To Boldly Go Where No AI System Has Gone Before,” IJCAI'97—Japanese Conf. on Artificial Intelligence, 1997, Nayoga, Japan, pp. 48-60.

  21. W.W. Peterson and E.J. Weldon, Error Correcting Codes, Cambridge, MA: MIT Press, 1972.

    Google Scholar 

  22. D.K. Pradhan, Fault-Tolerant Computer System Design, New York: Prentice-Hall, 1996.

    Google Scholar 

  23. C. Stroud, E. Lee, and M. Abramoviei, “Bist-Based Diagnostic of FPGA Logic Blocks,” Proc. Int. Test Conference (ITC'97), Nov. 1997, Washington, DC, pp. 539-547.

  24. F. Vargas and M. Nicolaidis, “SEU-Tolerant SRAM Design Based on Current Monitoring,” Proc. Int. Symp. on Fault-Tolerant Computing (FTCS'94), June 1994, Austin, Texas, pp. 106-115.

  25. J. Villasenor et al., “Configurable Computing Solutions for Automatic Target Recognition,” Proc. IEEE Workshop on FPGAs for Custom Computing Machines, April 1996, Napa, CA, pp. 70-79.

  26. Xilinx, “The Programmable Logic Data Book,” Xilinx, San Jose, 1999.

    Google Scholar 

  27. Xilinx, “Virtex Configuration and Readback,” Xilinx Application Note 138 (XAPP 138), San Jose, March 1999.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezerra, E.A., Vargas, F. & Gough, M.P. Improving Reconfigurable Systems Reliability by Combining Periodical Test and Redundancy Techniques: A Case Study. Journal of Electronic Testing 17, 163–174 (2001). https://doi.org/10.1023/A:1011177911388

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011177911388

Navigation