Skip to main content
Log in

An ab initio theoretical study of the stereoisomers of tetrahydrocannabinols

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

An extensive theoretical study of the stereoisomers of tetrahydrocannabinols has been performed at the ab initio HF/6-31G* and B3LYP/6-31G* levels. Effects of solvation were calculated with the Onsager model (with full geometry optimization), SCRF with Tomasi's PCM, and isodensity polarization continuum models. Single-point MP2//HF/6-31G* calculations were carried out. Frequency calculations for all the isomers at the HF/6-31G* level and for two natural isomers Δ1-THC-RR and Δ6-THC-RR at the B3LYP/6-31G* level were performed. Our results support the findings of the previous AM1 studies that the orientation of the carbocyclic ring and its C1 substituent with respect to the phenyl group hydroxyl oxygen play the major role in the activity. The calculated values of the LUMO energy (lowest unoccupied molecular orbital) and the hardness of the stereoisomers show that for the trans isomers it is easier to remove one electron from its HOMO (highest occupied molecular orbital) to the LUMO and easier to accept an electron from the receptor binding site than for the cis isomers. Combining geometric features (the orientation of the carbocyclic ring and its C1 substituent with respect to the phenyl group hydroxyl oxygen) with electronic features (LUMO and hardness), we explain the activity differences among the stereoisomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaoni, Y. and Mechoulam, R., J. Amer. Chem. Soc., 86 (1964) 1646.

    Google Scholar 

  2. Mechoulam, R. and Gaoni, Y., Fortschr. Chem. Org. Naturst., 25 (1967) 175.

    Google Scholar 

  3. Razdan, R.K., Pharmacol. Rev., 38 (1986) 75.

    Google Scholar 

  4. Makriyannis, A. and Rapaka, R.S., Life Sci., 47 (1990) 2173.

    Google Scholar 

  5. Melvin, L.S., Milne, G.M., Johnson, M.R., Wilken, G.H. and Howlett, A.C., Drug Design Disc., 13 (1995) 155.

    Google Scholar 

  6. Johnson, M.R. and Melvin, L.S., in Mechoulam, R. (Ed.), Cannabinoids as Therapeutic Agents, CRC Press, Boca Raton, 1986, pp. 121-145.

    Google Scholar 

  7. Melvin, L.S. and Johnson, M.R., NIDA Res. Monogr., 79 (1987) 31.

    Google Scholar 

  8. Devane, W.A., Dysarz, F.A. III, Johnson, M.R., Melvin, L.S. and Howlett, A.C., Mol. Pharmacol., 34 (1988) 605

    Google Scholar 

  9. Devane, W.A. Thesis, St. Louis University, St. Louis, MO, 1989.

  10. Matsuda, L.A., Lolait, S.J., Brownstein, M.J., Young, A.C. and Bonner, T.I., Nature, 346 (1990) 561.

    Google Scholar 

  11. Munro, S., Thomas, K.L. and Abu-Shaar, M., Nature, 365 (1993) 61.

    Google Scholar 

  12. Mechoulam, R. and Edery, H., in Mechoulam, R. (Ed.), Marijuana Chemistry, Metabolism, Pharmacology and Clinical Effects, Academic Press, New York, NY, 1973, pp. 101.

    Google Scholar 

  13. Jones, G., Pertwee, R.G., Gill, E.W., Paton, W.D.M., Nillsson, I.M., Widman, M. and Agurell, S., Biochem. Pharmacol., 23 (1974) 439.

    Google Scholar 

  14. Martin, B.R., Balster, R.L., Razdan, R.K., Harris, L.S. and Dewey, W.L., Life Sci., 29 (1981) 565.

    Google Scholar 

  15. Archer, R.A., Boyd, D.B., Demarco, P.V., Tyminski, I.J. and Allinger, N.L., J. Am. Chem. Soc., 92 (1970) 5200.

    Google Scholar 

  16. Tamir, I., Mechoulam, R. and Meyer, A., J. Med. Chem., 23 (1980) 220.

    Google Scholar 

  17. Reggio, P.H. and Mazurek, A.P., J. Mol. Struct. (Theochem), 149 (1987) 331.

    Google Scholar 

  18. Johnson, M.R., Melvin, L.S. and Milne G.M., Life Sci., 31 (1982) 1703.

    Google Scholar 

  19. Reggio, P.H., in Rapaka, R.S. and Makriyannis A. (Eds.), Structure Activity Relationships of the Cannabinoids, National Institute on Drug Abuse, Washington, DC, 1987, Monograph 79, pp. 15.

    Google Scholar 

  20. Reggio, P.H., Int. J. Quant. Chem., 44 (1992) 165.

    Google Scholar 

  21. Reggio, P.H., Greer, K.V. and Cox, S.M., J. Med. Chem., 32 (1989) 1630.

    Google Scholar 

  22. Reggio, P.H., Panu, A.M. and Miles, S., J. Med. Chem., 36 (1993) 1761.

    Google Scholar 

  23. Thomas, B.F., Compton, D.R., Martin, B.R. and Semus, S.F., Mol. Pharmacol., 40 (1991) 656.

    Google Scholar 

  24. Bodor, N.S. and Huang, M.-J., Int. J. Quant. Chem., 61 (1997) 127.

    Google Scholar 

  25. Sprague, J.T., Tai, J.C., Yuh, Y. and Allinger, N., J. Comput. Chem., 8 (1987) 581.

    Google Scholar 

  26. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902.

    Google Scholar 

  27. Frish, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Keith, T., Petersson, G.A., Montgomery, J.A., Rahgavachari, K., Al-Laham. M.A., Zakrzewski, V.G., Ortiz, J.V., Foresman, J.B., Cioslowski, J., Stefanov, B., Nanayakkara, A., Challacombe, M., Peng, C.Y., Ayala, P.Y., Chen, W., Wong, M.W., Andres, J.L., Replogle, E.S., Goperts, R., Martin, R.L., Fox, D.J., Binkley, J.S., Defrees, D.J., Baker, J., Stwaert, J.J.P., Head-Gordon, M., Gonzalez, C. and Pople, J.A., GAUSSIAN 94, Revision E.2, Gaussian, Inc., Pittsburgh, PA, 1995.

    Google Scholar 

  28. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A. Jr., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S. and Pople, J.A., GAUSSIAN 98; Revisions A.6 and A.7, Gaussian,Inc., Pittsburgh, PA, 1998.

    Google Scholar 

  29. Onsager, L., J. Am. Chem. Soc. 58 (1936) 1486.

    Google Scholar 

  30. Miertus, S. and Tomasi, J., J. Chem. Phys. 65 (1982) 239.

    Google Scholar 

  31. Miertus, S., Swcrocco, E. and Tomasi, J., J. Chem. Phys. 55 (1981) 117.

    Google Scholar 

  32. Foresman, J.B., Keith, T.A., Wiberg, K.B., Snoonian, J. and Frisch, M.J., J. Phys. Chem. 100 (1996) 16098.

    Google Scholar 

  33. Becke, A.D., Phys. Rev. A38 (1988) 3098.

    Google Scholar 

  34. Lee, C., Yang, W. and Parr, R.G., Phys. Rev. B 37 (1988) 785.

    Google Scholar 

  35. Razdan, R.K., Pharmacol. Rev. 38 (1986) 75.

    Google Scholar 

  36. Thomas, B.F., Compton D.R. and Martin, B.R., J. Pharmacol. Exp. Ther. 255 (1990) 624.

    Google Scholar 

  37. Chiang, J.F. and Bauer, S.H., J. Am. Chem. Soc. 91 (1969) 1898.

    Google Scholar 

  38. Parr, R.F. and Pearson, R.G., J. Am. Chem. Soc. 105 (1983) 7512.

    Google Scholar 

  39. Bauschlicher, C.W. and Partridge, H., J. Chem. Phys. 103 (1995), 1788.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, MJ., Leszczynski, J. An ab initio theoretical study of the stereoisomers of tetrahydrocannabinols. J Comput Aided Mol Des 15, 323–333 (2001). https://doi.org/10.1023/A:1011187218375

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011187218375

Navigation