Skip to main content
Log in

Differentiation of δ, μ, and κ opioid receptor agonists based on pharmacophore development and computed physicochemical properties

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Compounds that bind with significant affinity to the opioid receptor types, δ, μ, and κ, with different combinations of activation and inhibition at these three receptors could be promising behaviorally selective agents. Working on this hypothesis, the chemical moieties common to three different sets of opioid receptor agonists with significant affinity for each of the three receptor types δ, μ, or κ were identified. Using a distance analysis approach, common geometric arrangements of these chemical moieties were found for selected δ, μ, or κ opioid agonists. The chemical and geometric commonalities among agonists at each opioid receptor type were then compared with a non-specific opioid recognition pharmacophore recently developed. The comparison provided identification of the additional requirements for activation of δ, μ, and κ opioid receptors. The distance analysis approach was able to clearly discriminate κ-agonists, while global molecular properties for all compounds were calculated to identify additional requirements for activation of δ and μ receptors. Comparisons of the combined geometric and physicochemical properties calculated for each of the three sets of agonists allowed the determination of unique requirements for activation of each of the three opioid receptors. These results can be used to improve the activation selectivity of known opioid agonists and as a guide for the identification of novel selective opioid ligands with potential therapeutic usefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Law, P.Y. and Loh, H.H., J. Pharmacol. Exp. Ther., 289 (1999) 607.

    Google Scholar 

  2. Massotte, D. and Kieffer, B.L., Essays Biochem., 33 (1998) 65.

    Google Scholar 

  3. Harrison, L.M., Kastin, A.J. and Zadina, J.E., Peptides, 19 (1998) 1603.

    Google Scholar 

  4. Jordan, B.A., Cvejic, S. and Devi, L.A., Neuropsychopharmacology, 23(4 Suppl) (2000) S5.

    Google Scholar 

  5. Mosberg, H.I., Biopolymers, 51 (1999) 426.

    Google Scholar 

  6. Pascoe, P.J., Vet. Clin. North Am. Small Anim. Pract., 30 (2000) 757.

    Google Scholar 

  7. Filizola, M., Laakkonen, L. and Loew, G.H., Protein Eng., 12 (1999) 927.

    Google Scholar 

  8. Maguire, P.A. and Loew, G.H., Eur. J. Pharmacol., 318 (1996) 505.

    Google Scholar 

  9. Chen, S.W., Maguire, P.A., Davies, M.F. and Loew, G.H., Eur. J. Pharmacol., 312 (1996) 241.

    Google Scholar 

  10. Alkorta, I. and Loew, G.H., Protein Eng., 9 (1996) 573.

    Google Scholar 

  11. Agarwal, A., Beatty, M.F., Maguire, P.A. and Loew, G.H., Analgesia, 1 (1995) 247.

    Google Scholar 

  12. Loew, G., Agarwal, A., Huang, P., Beatty, M., Maguire, P. and Alkorta, I., Chem. Des. Automat. News, 11 (1996) 28.

    Google Scholar 

  13. Huang, P., Kim, S. and Loew, G.H., J. Comput. Aided Mol. Des., 11 (1997) 21.

    Google Scholar 

  14. Chao, T.M., Perez, J.J. and Loew, G.H., Biopolymers, 38 (1996) 759.

    Google Scholar 

  15. Evans, C.K., Keith, D.E., Morrison, H., Magendzo, K. and Edwards, R.H., Science, 258 (1992) 1952.

    Google Scholar 

  16. Kieffer, B.L., Befort, K., Gaveriaux-Guff, C. and Hirth, C.G., Proc. Natl. Acad. Sci. USA, 89 (1992) 12048.

    Google Scholar 

  17. Yasuda, K., Rainor, K., Kong, H., Breder, J., Takeda, J., Reisine, T. and Bell, G.I., Proc. Natl. Acad. Sci. USA, 90 (1993) 6736.

    Google Scholar 

  18. Meng, F., Xie, G.X., Thompson, R.C., Mansour, A., Goldstein, A., Watson, S.J. and Akil, H., Proc. Natl. Acad. Sci. USA, 90 (1993).

  19. Chen, Y., Mestek, A., Liu, J., Hurley, J.A. and Yu, L., Mol. Pharmacol., 44 (1993) 8.

    Google Scholar 

  20. Fukuda, K., Kato, S., Mori, K., Nishi, M. and Takeshima, H., FEBS Lett., 327 (1993) 311.

    Google Scholar 

  21. Knapp, R.J., Malatynska, E., Fang, L., Li, X., Babin, E., Nguyen, M., Santoro, G., Varga, E.V., Hruby, V.J., Roeske, W.R. and Yamamura, H.I., Life Sci., 54 (1994) PL463.

    Google Scholar 

  22. Wang, J.B., Johnson, P.S., Persico, A.M., Hawkins, A.L., Griffin, C.A. and Uhl, G.R., FEBS Lett., 338 (1994) 217.

    Google Scholar 

  23. Mansson, E., Bare, L. and Yang, D., Biochem. Biophys. Rec. Commun., 202 (1994) 1431.

    Google Scholar 

  24. Ulloa-Aguirre, A., Stanislaus, D., Janovick, J. and Conn, P.M., Arch. Med. Res., 30 (1999) 420.

    Google Scholar 

  25. Gether, U., Endocr. Rev., 21 (2000) 90.

    Google Scholar 

  26. Strahs, D. and Weinstein, H., Protein Eng., 10 (1997) 1019.

    Google Scholar 

  27. Pogozheva, I.D., Lomize, A.L. and Mosberg, H.I., Biophys. J., 75 (1998) 612.

    Google Scholar 

  28. Zhorov, B.S. and Ananthanarayanan, V.S., Arch. Biochem. Biophys., 375 (2000) 31.

    Google Scholar 

  29. Filizola, M., Carteni-Farina, M. and Perez, J.J., J. Comput. Aided Mol. Des., 13 (1999) 397.

    Google Scholar 

  30. Loew, G.H., Villar, H.O. and Alkorta, I., Pharm. Res., 10 (1993) 475.

    Google Scholar 

  31. Filizola, M., Villar, H.O. and Loew, G.H., Bioorg. Med. Chem., 9 (2001) 69.

    Google Scholar 

  32. Harris, D.L. and Loew, G.H., Bioorg. Med. Chem. 8 (2000) 2527.

    Google Scholar 

  33. Bye, E., Acta Chem. Scand. Ser. B, 30 (1976) 549.

    Google Scholar 

  34. Sime, R.J., Dobler, M. and Sime, R.L., Acta Crystallogr. B, 32 (1976) 809.

    Google Scholar 

  35. Jegorov, A., Sobotik, R., Pakhomova, S., Ondracek, J., Novotny, J., Husak, M. and Kratochvil, B., Collect. Czech. Chem. Commun., 59 (1994) 1361.

    Google Scholar 

  36. Donohue, J. and Stallings, W.J., J. Cryst. Mol. Struct., 11 (1981) 69.

    Google Scholar 

  37. Flippen-Anderson, J.L., George, C., Bertha, C.M. and Rice, K.C., Heterocycles, 39 (1994) 751.

    Google Scholar 

  38. Peeters, O.M., Blaton, N.M., DeRanter, C.J., van Herk, A.M. and Goubitz, K., J. Crystallogr. Mol. Struct., 9 (1979) 153.

    Google Scholar 

  39. Tollenaere, J.P., Moereels, H. and van Loon, M., Prog. Drug Res., 30 (1986) 91.

    Google Scholar 

  40. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., J. Comput. Chem., 4 (1983) 187.

    Google Scholar 

  41. Vieth, M., Hirst, J.D. and Brooks III, C.L., J. Comp. Aid. Mol. Des., 12 (1998) 563.

    Google Scholar 

  42. Bostrom, J., Norrby, P.O. and Liljefors, T., J. Comp. Aid. Mol. Des., 12 (1998) 383.

    Google Scholar 

  43. Stewart, J.J.P., J. Comput.-Aided. Mol. Design, 4 (1990) 1.

    Google Scholar 

  44. Verloop, A., Hoogenstraaten, W. and Tipker, J. Development and Application of New Substituent Parameters in Drug Design., Academic Press, New York, 1976.

    Google Scholar 

  45. Hawkins, G.D., Giesen, D.J., Lynch, G.C., Chambers, C.C., Rossi, I., Storer, J.W., Li, J., Zhu, T., Rinaldi, D., Liotard, D.A., Cramer, C.J. and Truhlar, D.G., (1998).

  46. Subramanian, G., Paterlini, M.G., Portoghese, P.S. and Ferguson, D.M., J. Med. Chem., 43 (2000) 381.

    Google Scholar 

  47. Kantola, A., Villar, H.O. and Loew, G.H., J. Comp. Chem., 12 (1991) 681.

    Google Scholar 

  48. Alkorta, I. and Villar, H.O., Int. J. Quant. Chem., 44 (1992) 203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filizola, M., Villar, H.O. & Loew, G.H. Differentiation of δ, μ, and κ opioid receptor agonists based on pharmacophore development and computed physicochemical properties. J Comput Aided Mol Des 15, 297–307 (2001). https://doi.org/10.1023/A:1011187320095

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011187320095

Navigation