Skip to main content
Log in

A Study of the Dennis-Wolkowicz Method on Convex Functions

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we analyze the global convergence of the least-change secant method proposed by Dennis and Wolkowicz, when applied to convex objective functions. One of the most distinguished features of this method is that the Dennis-Wolkowicz update doesn't necessarily belong to the Broyden convex family and can be close to the DFP update, but it still has the self-correcting property. We prove that, for convex objective functions, this method with the commonly used Wolfe line search is globally convergent. We also provide some numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Al-Baali, “Highly efficient Broyden methods of minimization with variable parameter, ” Optimization Methods and Software, vol. 1, pp. 301–310, 1992.

    Google Scholar 

  2. R.H. Byrd, D.C. Liu, and J. Nocedal, “On the behavior of Broyden's class of quasi-Newton methods, ” SIAM J. Opt., vol. 2, pp. 533–557, 1992.

    Google Scholar 

  3. R.H. Byrd and J. Nocedal, “A tool for the analysis of quasi-Newton methods with application to unconstrained minimization, ” SIAM J. Numer. Anal., vol. 26, pp. 727–739, 1989.

    Google Scholar 

  4. R.H. Byrd, J. Nocedal, and Y. Yuan, “Global convergence of a class of quasi-Newton methods on convex problems, ” SIAM J. Numer. Anal., vol. 24, pp. 1171–1191, 1987.

    Google Scholar 

  5. R.H. Byrd, J. Nocedal, and C. Zhu, “Towards a discrete Newton method with memory for large-scale optimization, ” Technical Report OTC 95/01, 1996.

  6. A.R. Conn, N.I.M. Gould, and Ph. L. Toint, “Convergence of quasi-Newton matrices generated by the symmetric rank one update, ” Math. Prog., vol. 2, pp. 177–195, 1991.

    Google Scholar 

  7. M. Contreras and R.A. Tapia, “Sizing the BFGS and DFP updates: Numerical study, ” JOTA, vol. 78, pp. 93–108, 1993.

    Google Scholar 

  8. W.C. Davidon, “Optimally conditioned optimization algorithms without line searches, ” Math. Prog, vol. 9, pp. 1–30, 1975.

    Google Scholar 

  9. J.E. Dennis Jr., D.M. Gay, and R.E. Welsch, “An adaptive nonlinear least-squares algorithm, ” TOMS, vol. 7, pp. 348–368, 1981.

    Google Scholar 

  10. J.E. Dennis Jr. and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall: Englewood Cliffs, NJ, 1983 (in English). Mir Publishing Office, Moscow, 1988 (in Russian).

    Google Scholar 

  11. J.E. Dennis Jr. and H. Wolkowicz, “Sizing and least-change secant methods, ” SIAM J. Numer. Anal., vol. 30, pp. 1291–1314, 1993.

    Google Scholar 

  12. R. Fletcher, “A new variational result for quasi-Newton formulae, ” SIAM J. Opt., vol. 1, pp. 18–21, 1991.

    Google Scholar 

  13. R. Fletcher, Practical Methods of Optimization, 2nd ed., John Wiley and Sons: New York, 1987.

    Google Scholar 

  14. J.C. Gilbert and J. Nocedal, “Global convergence properties of conjugate gradient methods for optimization, ” SIAM J. Optimization, vol. 2, pp. 21–42, 1992.

    Google Scholar 

  15. L.X. Han and G.H. Liu, “Global analysis of the Dennis-Wolkowicz least-change secant algorithm, ” SIAM J. Opt., vol. 8, pp. 813–832, 1998.

    Google Scholar 

  16. H. Khalfan, R.H. Byrd, and R.B. Schnabel, “A theoretical and experimental study of the symmetric rank one update, ” University of Colorado, Boulder, Technical Report CU-CS-489-90, 1990.

    Google Scholar 

  17. D. Li and M. Fukushima, “On the global convergence of BFGS method for nonconvex unconstrained optimization problems, ” Department of Applied Mathematics and Physics, Kyoto University, Technical Report 99007, 1999.

  18. L. Luksan, “Computational experience with known variable metric updates, ” JOTA, vol. 83, pp. 27–47, 1994.

    Google Scholar 

  19. J. Nocedal, “Theory of algorithms for unconstrained optimization, ” in Acta Numerica, A. Iserles, (Ed.), Cambridge University Press: Cambridge, England, 1992, pp. 199–242.

    Google Scholar 

  20. S.S. Oren and D.G. Luenberger, “Self-scaling veriable metric (SSVM)algorithms, Part I. Criteria and sufficient conditions for scaling a class of algorithms, ” Management Sci., vol. 20, pp. 845–862, 1974.

    Google Scholar 

  21. S.S. Oren and E. Spedicato, “Optimal conditioning of self-scaling variable metric algorithms, ” Math. Prog., vol. 10, pp. 70–90, 1976.

    Google Scholar 

  22. J.D. Pearson, “Variable metric methods of minimization, ” The Computer J., vol. 12, pp. 171–178, 1969.

    Google Scholar 

  23. K.H. Phua and D.F. Shanno, “Numerical comparison of several variable metric algorithms, ” JOTA, vol. 25, pp. 507–518, 1978.

    Google Scholar 

  24. M.J.D. Powell, “Some properties of the variable metric algorithm, ” in Numerical Methods for Nonlinear Optimization, F.A. Lootsma, (Ed.), Academia Press: London, 1972.

    Google Scholar 

  25. M.J.D. Powell, “Some global convergence properties of a variable metric algorithm for minimization without exact line searches in Nonlinear Programming, ” in SIAM-AMS Proceedings, 1976, vol. IX., R.W. Cottle and C.E. Lemke (Eds.), American Mathematical Society: Providence, RI.

    Google Scholar 

  26. D. Pu and W. Tian, “A class of modified Broyden algorithms, ” J. of Computational Mathematics, vol. 12, pp. 366–379, 1994.

    Google Scholar 

  27. J.Werner, “Global convergence of quasi-Newton methods with practical line searches, ” NAM-Bericht Nr. 67, Marz, Technical Report, 1989.

  28. H. Wolkowicz, “Measures for symmetric rank-one updates, ” Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Tech. Report CORR 90-03, 1990.

    Google Scholar 

  29. Y. Zhang and R.P. Tewarson, “Quasi-Newton algorithms with updates from the pre-convex part of Broyden's family, ” IMA J. Numer. Anal., vol. 8, pp. 487–509, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Han, L. A Study of the Dennis-Wolkowicz Method on Convex Functions. Computational Optimization and Applications 19, 297–317 (2001). https://doi.org/10.1023/A:1011212022308

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011212022308

Navigation