Abstract
S. Abramsky has introduced interaction categories as a new semantics for concurrent computation. We show that interaction categories can be naturally described in the language of quantaloids. More precisely, they are closely related to fix-points of a certain comonad on the category of quantaloids with biproducts.
Similar content being viewed by others
References
Abramsky, S.: Interaction categories (extended abstract), in G. Burn, S. Gay and M. Ryan (eds.), Theory and Formal Methods 1993, Springer Workshops in Computing, Springer-Verlag, 1993, pp. 57-70.
Abramsky, S.: Interaction categories I: Synchronous case, Deposited in the hypatia archive (http://hypatia.dcs.qmw.ac.uk).
Abramsky, S., Gay, S. J. and Nagarajan, R.: Interaction categories and the foundation of the typed concurrent programming, in M. Broy (ed.), Deductive Program Design, Springer-Verlag, 1996, pp. 35-115.
Abramsky, S., Gay, S. J. and Nagarajan, R.: Specification structures and propositions-as-types for concurrency, in Logics for Concurrency vs. Automata, LNCS 1043, Springer-Verlag, 1996.
Adámek, J.: Free algebras and automata realizations in the language of categories, Comment. Math. Univ. Carolin. 15 (1974), 589-602.
Kameník, O.: Fix point semantics for synchronous processes, Preprint.
Lambek, J.: Subequalizers, Canad. Math. Bull. 13 (1970), 337-349.
Rosenthal, K. I.: Free quantaloids, J. Pure Appl. Algebra 72 (1991), 67-82.
Rosenthal, K. I.: Girard quantaloids, Math. Structures Comput. Sci. 2 (1992), 93-108.
Rosenthal, K. I.: The Theory of Quantaloids, Addison Wesley, 1996.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Rosický, J. Quantaloids for Concurrency. Applied Categorical Structures 9, 329–338 (2001). https://doi.org/10.1023/A:1011252012003
Issue Date:
DOI: https://doi.org/10.1023/A:1011252012003