Skip to main content
Log in

The Protein Structure Prediction Problem: A Constraint Optimization Approach using a New Lower Bound

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

The protein structure prediction problem is one of the most (if not the most) important problem in computational biology. This problem consists of finding the conformation of a protein with minimal energy. Because of the complexity of this problem, simplified models like Dill's HP-lattice model [15], [16] have become a major tool for investigating general properties of protein folding. Even for this simplified model, the structure prediction problem has been shown to be NP-complete [5], [7]. We describe a constraint formulation of the HP-model structure prediction problem, and present the basic constraints and search strategy. Of course, the simple formulation would not lead to an efficient algorithm. We therefore describe redundant constraints to prune the search tree. Furthermore, we need bounding function for the energy of an HP-protein. We introduce a new lower bound based on partial knowledge about the final conformation (namely the distribution of H-monomers to layers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abkevich, V. I., Gutin, A. M., & Shakhnovich, E. I. (1995). Impact of local and non-local interactions on thermodynamics and kinetics of protein folding. Journal of Molecular Biology, 252: 460–471.

    Google Scholar 

  2. Abkevich, V. I., Gutin, A. M., & Shakhnovich, E. I. (1997). Computer simulations of prebiotic evolution. In Proc. of the Pacific Symposium on Biocomputing '97, pages 27–38.

  3. Backofen, R., & Will, S. (1999). Excluding symmetries in constraint-based search. In J. Jaffar, ed., Proceedings of 5th International Conference on Principle and Practice of Constraint Programming (CP'99), volume 1713 of Lecture Notes in Computer Science, pages 73–87. Berlin: Springer-Verlag.

    Google Scholar 

  4. Backofen, R., Will, S., & Bornberg-Bauer, E. (1999). Application of constraint programming techniques for structure prediction of lattice proteins with extended alphabets. J. Bioinformatics, 15(3): 234–242.

    Google Scholar 

  5. Berger, B., & Leighton, T. (1998). Protein folding in the hydrophobic-hydrophilic (HP) modell is NP-complete. In Proceedings of the Second Annual International Conferences on Compututational Molecular Biology (RECOMB98), New York, pages 30–39.

  6. Bornberg-Bauer, E. (1997). Chain growth algorithms for IIP-type lattice proteins. In Proceedings of the First Annual International Conferences on Compututational Molecular Biology (RECOMB97), Santa Fe, New Mexico, pages 47–55. New York: ACM Press.

    Google Scholar 

  7. Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., & Yannakakis, M. (1998). On the complexity of protein folding. In Proceedings of STOC, pages 597–603. Short version in Proceedings of RECOMB'98, pages 61–62.

  8. Dill, K. A., Bromberg, S., Yue, K., Fiebig, K. M., Yee, D. M., Thomas, P. D., & Chan, H. S. (1995). Principles of protein folding—a perspective of simple exact models. Protein Science, 4: 561–602.

    Google Scholar 

  9. Dill, K. A., Fiebig, K. M., & Chan, H. S. (1993). Cooperativity in protein-folding kinetics. Proceedings of the National Academy of Sciences USA, 90: 1942–1946.

    Google Scholar 

  10. Dinner, A. R., Šali, A., & Karplus, M. (1996). The folding mechanism of larger model proteins: role of native structure. Proceedings of the National Academy of Sciences USA, 93: 8356–8361.

    Google Scholar 

  11. Govindarajan, S., & Goldstein, R. A. (1997). Evolution of model proteins on a foldability landscape. Proteins, 29(4): 461–466.

    Google Scholar 

  12. Govindarajan, S., & Goldstein, R. A. (1997). The foldability landscape of model proteins. Biopolymers, 42(4): 427–438.

    Google Scholar 

  13. Hart, W. E., & Istrail, S. C. (1996). Fast protein folding in the hydrophobic-hydrophilic model within three-eighths of optimal. Journal of Computational Biology, 3(1): 53–96.

    Google Scholar 

  14. Hinds, D. A., & Levitt, L. (1996). From structure to sequence and back again. Journal of Molecular Biology, 258: 201–209.

    Google Scholar 

  15. Lau, K. F., & Dill, K. A. (1989). A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules, 22: 3986–3997.

    Google Scholar 

  16. Lau, K. F., & Dill, K. A. (1990). Theory for protein mutability and biogenesis. Proceedings of the National Academy of Sciences USA, 87: 638–642.

    Google Scholar 

  17. Ortiz, A. R., Kolinski, A., & Skolnick, J. (1998). Combined multiple sequence reduced protein model approach to predict the tertiary structure of small proteins. In Proc. of the Pacific Symposium on Biocomputing '98, volume 3, pages 375–386.

    Google Scholar 

  18. Smolka, G. (1995). The Oz programming model. In J. van Leeuwen, ed., Computer Science Today, volume 1000 of Lecture Notes in Computer Science, pages 324–343. Berlin: Springer-Verlag.

    Google Scholar 

  19. Unger, R., & Moult, J. (1993). Genetic algorithms for protein folding simulations. Journal of Molecular Biology, 231: 75–81.

    Google Scholar 

  20. Unger, R., & Moult, J. (1996). Local interactions dominate folding in a simple protein model. Journal of Molecular Biology, 259: 988–994.

    Google Scholar 

  21. Šali, A., Shakhnovich, E., & Karplus, M. (1994). Kinetics of protein folding. Journal of Molecular Biology, 235: 1614–1636.

    Google Scholar 

  22. Yue, K., & Dill, K. A. (1993). Sequence-structure relationships in proteins and copolymers. Physical Review E, 48(3): 2267–2278.

    Google Scholar 

  23. Yue, K., & Dill, K. A. (1995). Forces of tertiary structural organization in globular proteins. Proceedings of the National Academy of Sciences USA, 92: 146–150.

    Google Scholar 

  24. Yue, K., Fiebig, M., Thomas, P. D., Chan, H. S., Shakhnovich, E. I., & Dill, K. A. (1995). A test of lattice protein folding algorithms. Proceedings of the National Academy of Sciences USA, 92: 325–329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Backofen, R. The Protein Structure Prediction Problem: A Constraint Optimization Approach using a New Lower Bound. Constraints 6, 223–255 (2001). https://doi.org/10.1023/A:1011485622743

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011485622743

Navigation