Skip to main content
Log in

Transpose-free formulations of Lanczos-type methods for nonsymmetric linear systems

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We present a transpose-free version of the nonsymmetric scaled Lanczos procedure. It generates the same tridiagonal matrix as the classical algorithm, using two matrix–vector products per iteration without accessing AT. We apply this algorithm to obtain a transpose-free version of the Quasi-minimal residual method of Freund and Nachtigal [15] (without look-ahead), which requires three matrix–vector products per iteration. We also present a related transpose-free version of the bi-conjugate gradients algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Brezinski and M. Redivo-Zaglia, Hybrid procedures forsolving linear systems, Numer. Math. 67(1) (1994) 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Brezinski and M. Redivo-Zaglia, Look-ahead in Bi-CGSTAB and other product methods for linear systems, BIT 35 (1995) 169–201.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Brezinski and M. Redivo-Zaglia, Transpose-free Lanczos-type algorithms for nonsymmetric linear systems, Numer. Algorithms 17 (1998), this issue.

  4. C. Brezinski, M. Redivo-Zaglia and H. Sadok, Avoiding breakdown and near-breakdown in Lanczos type algorithms, Numer. Algorithms 1 (1991) 261–284.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Brezinski, M. Redivo-Zaglia and H. Sadok, A breakdown-free Lanczos type algorithm for solving linear systems, Numer. Math. 63 (1992) 29–38.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Statist. Comput. 11(3) (1990) 450–481.

    Article  MATH  MathSciNet  Google Scholar 

  7. T.F. Chan, E. Gallopouls, V. Simoncini, T. Szeto and C.H. Tong, A quasi-minimal residual variant of the Bi-CGSTAB algorithm for nonsymmetric systems, SIAM J. Sci. Comput. 15 (1994) 338–347.

    Article  MATH  MathSciNet  Google Scholar 

  8. T.F. Chan and K.R. Jackson, The use of iterative linear equation solvers in codes for large systems of stiff IVP's for ODEs, SIAM J. Sci. Statist. Comput. 7 (1986) 378–417.

    Article  MATH  MathSciNet  Google Scholar 

  9. T. Chronopoulos and S. Ma, On squaring Krylov subspace iterative methods for nonsymmetric linear systems, Technical Report 89–67, Computer Science Department, University of Minnesota (1989).

  10. V. Faber and T. Manteuffel, Necessary and sufficient conditions for the existance of a conjugate gradient method, SIAM J. Numer. Anal. 21 (1984) 352–362.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Fletcher, Conjugate Gradient Methods for Indefinite Systems, Lecture Notes in Mathematics 506 (Springer, Berlin, 1976).

    Google Scholar 

  12. D.R. Fokkema, G.L.G. Sleijpen and H.A. Van der Vorst, Generalized conjugate gradient squared, J. Comput. Appl. Math. 71 (1994) 125–146.

    Article  MathSciNet  Google Scholar 

  13. R.W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Comput. 14 (1993) 470–482.

    Article  MATH  MathSciNet  Google Scholar 

  14. R.W. Freund, M.H. Gutknecht and N.M. Nachtigal, An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput. 13 (1992) 137–158.

    Article  MathSciNet  Google Scholar 

  15. R.W. Freund and N.M. Nachtigal, QMR: A quasi-minimal residual method for non-Hermitian linear systems, Numer. Math. 60 (1991) 315–339.

    Article  MATH  MathSciNet  Google Scholar 

  16. R.W. Freund and T. Szeto, A transpose-free quasi-minimal residual squared algorithm for non-Hermitian linear systems, in: Advances in Computer Methods for Partial Differential Equations, Vol. 7, eds. R. Vichnevetsky, D. Knight and G. Richter (IMACS, 1992) pp. 258–264.

  17. G.H. Golub and C.F. van Loan, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences (Johns Hopkins Univ. Press, Baltimore, MD, 3rd ed., 1996).

    Google Scholar 

  18. A. Greenbaum, Estimating the attainable accuracy of recursively computed residual methods, SIAM J. Matrix Anal. 18(3) (1997) 535–551.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (1987) 325.

    Article  MATH  MathSciNet  Google Scholar 

  20. M.H. Gutknecht, The unsymmetric Lanczos algorithms and their relations to Padé approximation, continued fractions and the q-d algorithms, in: Proc.of the Copper Mountain Conf.on Iterative Methods (April 1990). Also available at http://www.scsc.ethz.ch/ mhg/pub/CooperMtn90.ps.Z and CooperMtn90–7.ps.Z.

  21. M.H. Gutknecht, Variants of Bi-CGSTAB for matrices with complex spectrum, SIAM J. Sci. Comput. 14 (1993) 1020–1033.

    Article  MATH  MathSciNet  Google Scholar 

  22. C. Lanczos, Solution for systems of linear equations by minimized iteration, J. Res. Nat. Bur. Stand. 49 (1952) 33–53.

    MathSciNet  Google Scholar 

  23. J. Meijerink and H.A. Van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric m-matrix, Math. Comp. 31 (1977) 148–162.

    Article  MATH  MathSciNet  Google Scholar 

  24. Y. Saad and M.H. Schultz, GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986) 856–869.

    Article  MATH  MathSciNet  Google Scholar 

  25. G.L.G. Sleijpen and D.R. Fokkema, BICGSTAB(ℓ) for linear equations involving unsymmetric matrices with complex spectrum, ETNA 1 (1993) 11–32.

    MATH  MathSciNet  Google Scholar 

  26. G.L.G. Sleijpen and H.A. Van der Vorst, Reliable updated residuals in hybrid Bi-CG methods, Computing 56 (1996) 141–163.

    Article  MATH  MathSciNet  Google Scholar 

  27. P. Sonneveld, Cgs: A fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 10(1) (1989) 36–52.

    Article  MATH  MathSciNet  Google Scholar 

  28. H.A. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Comput. 13 (1992) 631–644.

    Article  MATH  MathSciNet  Google Scholar 

  29. L.B. Wigton, D.P. Yu and N.J. Young, GMRES acceleration of computational fluid dynamics codes, in: AIAA Conf., Denver, CO (1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, T.F., de Pillis, L. & van der Vorst, H. Transpose-free formulations of Lanczos-type methods for nonsymmetric linear systems. Numerical Algorithms 17, 51–66 (1998). https://doi.org/10.1023/A:1011637511962

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011637511962

Navigation