Skip to main content
Log in

By How Much Can Residual Minimization Accelerate the Convergence of Orthogonal Residual Methods?

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We capitalize upon the known relationship between pairs of orthogonal and minimal residual methods (or, biorthogonal and quasi-minimal residual methods) in order to estimate how much smaller the residuals or quasi-residuals of the minimizing methods can be compared to those of the corresponding Galerkin or Petrov–Galerkin method. Examples of such pairs are the conjugate gradient (CG) and the conjugate residual (CR) methods, the full orthogonalization method (FOM) and the generalized minimal residual (GMRES) method, the CGNE and BiCG versions of applying CG to the normal equations, as well as the biconjugate gradient (BiCG) and the quasi-minimal residual (QMR) methods. Also the pairs consisting of the (bi)conjugate gradient squared (CGS) and the transpose-free QMR (TFQMR) methods can be added to this list if the residuals at half-steps are included, and further examples can be created easily.

The analysis is more generally applicable to the minimal residual (MR) and quasi-minimal residual (QMR) smoothing processes, which are known to provide the transition from the results of the first method of such a pair to those of the second one. By an interpretation of these smoothing processes in coordinate space we deepen the understanding of some of the underlying relationships and introduce a unifying framework for minimal residual and quasi-minimal residual smoothing. This framework includes the general notion of QMR-type methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.N. Brown, A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM J. Sci. Statist. Comput. 12 (1991) 58–78.

    Google Scholar 

  2. T.F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto and C.H. Tong, A quasi-minimal residual variant of the Bi-CGSTAB algorithm for nonsymmetric systems, SIAM J. Sci. Comput. 15 (1994) 338–347.

    Google Scholar 

  3. J. Cullum, Peaks, plateaus, numerical instabilities in a Galerkin/minimal residual pair of methods for solving Ax = b, Appl. Numer. Math. 19 (1995) 255–278.

    Google Scholar 

  4. J. Cullum and A. Greenbaum, Relations between Galerkin and norm-minimizing iterative methods for solving linear systems, SIAM J. Matrix Anal. Appl. 17 (1996) 223–247.

    Google Scholar 

  5. M. Eiermann and O. Ernst, Geometric aspects in the theory of Krylov space methods, Acta Numerica 10 (2001) 251–312.

    Google Scholar 

  6. R. Fletcher, Conjugate gradient methods for indefinite systems, in: Numerical Analysis, ed. G.A. Watson, Dundee, 1975, Lecture Notes in Mathematics, Vol. 506 (Springer, Berlin, 1976) pp. 73-89.

    Google Scholar 

  7. R.W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Comput. 14 (1993) 470–482.

    Google Scholar 

  8. R.W. Freund, G.H. Golub and N.M. Nachtigal, Iterative solution of linear systems, Acta Numerica (1992) 57–100.

  9. R.W. Freund, M.H. Gutknecht and N.M. Nachtigal, An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput. 14 (1993) 137–158.

    Google Scholar 

  10. R.W. Freund and N.M. Nachtigal, QMR: A quasi-minimal residual method for non-Hermitian linear systems, Numer. Math. 60 (1991) 315–339.

    Google Scholar 

  11. A. Greenbaum, Estimating the attainable accuracy of recursively computed residual methods, SIAM J. Matrix Anal. Appl. 18 (1997) 535–551.

    Google Scholar 

  12. M.H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms, Part I, SIAM J. Matrix Anal. Appl. 13 (1992) 594–639.

    Google Scholar 

  13. M.H. Gutknecht, Changing the norm in conjugate gradient type algorithms, SIAM J. Numer. Anal. 30 (1993) 40–56.

    Google Scholar 

  14. M.H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms, Part II, SIAM J. Matrix Anal. Appl. 15 (1994) 15–58.

    Google Scholar 

  15. M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. National. Bureau Standards 49 (1952) 409–435.

    Google Scholar 

  16. C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bureau Standards 49 (1952) 33–53.

    Google Scholar 

  17. C.C. Paige and M.A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12 (1975) 617–629.

    Google Scholar 

  18. Y. Saad, Iterative Methods for Sparse Linear Systems (PWS, Boston, 1996).

    Google Scholar 

  19. Y. Saad and M.H. Schultz, Conjugate gradient-like algorithms for solving nonsymmetric linear systems, Math. Comp. 44 (1985) 417–424.

    Google Scholar 

  20. H. Sadok, Analysis of the convergence of the minimal and the orthogonal residual methods, Preprint (1997).

  21. W. Schönauer, Scientific Computing on Vector Computers (Elsevier, Amsterdam, 1987).

    Google Scholar 

  22. P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 10 (1989) 36–52.

    Google Scholar 

  23. E. Stiefel, Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme, Comm. Math. Helv. 29 (1955) 157–179.

    Google Scholar 

  24. H.A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13 (1992) 631–644.

    Google Scholar 

  25. H.F. Walker, Residual smoothing and peak/plateau behavior in Krylov subspace methods, Appl. Numer. Math. 19 (1995) 279–286.

    Google Scholar 

  26. R. Weiss, Convergence behavior of generalized conjugate gradient methods, PhD thesis, University of Karlsruhe (1990).

  27. R. Weiss, Properties of generalized conjugate gradient methods, J. Numer. Linear Algebra Appl. 1 (1994) 45–63.

    Google Scholar 

  28. R. Weiss, Parameter-Free Iterative Linear Solvers, Mathematical Research, Vol. 97 (Akademie Verlag, Berlin, 1996).

    Google Scholar 

  29. L. Zhou and H.F. Walker, Residual smoothing techniques for iterative methods, SIAMJ. Sci. Comput. 15 (1994) 297–312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutknecht, M.H., Rozložník, M. By How Much Can Residual Minimization Accelerate the Convergence of Orthogonal Residual Methods?. Numerical Algorithms 27, 189–213 (2001). https://doi.org/10.1023/A:1011889705659

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011889705659

Navigation