Skip to main content
Log in

The Discrete Relativistic Toda Molecule Equation and a Padé Approximation Algorithm

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The relativistic Toda molecule equation (RTM) describes a one-parameter deformation of coefficients of the recurrence relation of a class of biorthogonal polynomials including the Szegö polynomials. In this paper, we present (i) explicit solutions of the discrete relativistic Toda molecule equation (d-RTM), (ii) a new Padé approximation algorithm for a given power series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.I. Akheiezer, The Classical Moment Problem and Some Related Questions in Analysis (Olver & Boyd, Edinburgh, 1965).

    Google Scholar 

  2. A.K. Common and S.T. Hafez, Linearization of the relativistic and discrete-time Toda lattice for particular boundary conditions, Inverse Problems 8 (1992) 59–69.

    Google Scholar 

  3. Y.L. Geronimus, Polynomials Orthogonal on a Circle and Interval (Pergamon Press, Oxford, 1960).

    Google Scholar 

  4. P. Henrici, Applied and Computational Complex Analysis, Vol. 2 (Wiley, New York, 1977).

    Google Scholar 

  5. W.B. Jones and W.J. Thron, Continuous Fractions: Analytic Theory and Applications (Addison-Wesley, New York, 1980).

    Google Scholar 

  6. R. Hirota, Toda molecule equations, in: Algebraic Analysis, Vol. 1, eds.M. Kashiwara and T. Kawai (Academic Press, Boston, 1998) pp. 203–216.

    Google Scholar 

  7. A. Kharchev, A. Mironov and A. Zhedanov, Faces of relativistic Toda chain, Internat. J.Modern Phys. 12 (1997) 2675–2724.

    Google Scholar 

  8. J.H. McCabe and J.A. Murphy, Continued fractions which correspond to power series expansions at two points, J. Inst. Math. Appl. 17 (1976) 233–247.

    Google Scholar 

  9. K. Maruno, K. Kajiwara and M. Oikawa, Casorati determinant solution for the discrete-time relativistic Toda lattice equation, Phys. Lett. A 241 (1998) 335–343.

    Google Scholar 

  10. A. Mukaihira and Y. Nakamura, Schur flow for orthogonal polynomials on the unit circle and its integrable discretization, to appear in J. Comput. Appl. Math.

  11. Y. Nakamura, Calculating Laplace transforms in terms of the Toda molecule, SIAM J. Sci. Comput. 20 (1999) 306–317.

    Google Scholar 

  12. Y. Ohta, K. Kajiwara, J. Matsukidaira and J. Satsuma, Casorati determinant solution for the relativistic Toda lattice equation, J. Math. Phys. 34 (1993) 5190–5204.

    Google Scholar 

  13. S.N.M. Ruijsenaars, Relativistic Toda systems, Commun. Math. Phys. 133 (1990) 217–247.

    Google Scholar 

  14. Y.B. Suris, A discrete-time relativistic Toda lattice, J. Phys. A 29 (1996) 451–465.

    Google Scholar 

  15. G. Szegö, Orthogonal Polynomials (Amer. Math. Soc., Providence, RI, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minesaki, Y., Nakamura, Y. The Discrete Relativistic Toda Molecule Equation and a Padé Approximation Algorithm. Numerical Algorithms 27, 219–235 (2001). https://doi.org/10.1023/A:1011897724524

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011897724524

Navigation