Skip to main content

Advertisement

Log in

A virtual high throughput screen for high affinity cytochrome P450cam substrates. Implications for in silico prediction of drug metabolism

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Structure-based virtual screening techniques requirereliable scoring functions to discriminate potential substrates effectively. In this study we compared the performance of GOLD, PMF, DOCK and FlexX scoring functions in FlexX flexible docking to cytochrome P450cam binding site. Crystal structures of protein-substrate complexes were most effectively reproduced by the FlexX/PMF method. On the other hand, the FlexX/GOLD approach provided the best correlation between experimental binding constants and predicted scores. Binding modes selected by the FlexX/PMF approach were rescored by GOLD to obtain a reliable measure of binding energetics. The effectiveness of the FlexX/PMF/GOLD method was demonstrated by the correct classification of 32 out of the 33 experimentally studied compounds and also in a virtual HTS test on a library of 10,000 compounds. Although almost all the available functions were developed to be general, our study on cytochrome P450cam substrates suggests that careful selection or even tailoring the scoring function might increase the prediction power of virtual screens significantly. The FlexX/PMF/GOLD methodology was tested on cytochrome P450 3A4 substrates and inhibitors. This preliminary study revealed that the combined function was able to recognise 334 out of the 345 compounds bound to 3A4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J., Adv. Drug Deliv. Rev., 23 (1997) 3.

    Google Scholar 

  2. Walters, W.P. and Ajay, Murcko, M.A., Curr. Opin. Chem. Biol., 3 (2000) 384.

    Google Scholar 

  3. Trabit, M.H. and Berman, J., Curr. Opin. Chem. Biol., 2 (1998) 411.

    Google Scholar 

  4. Pickett, S.D., McLay, I.M. and Clark, D.E., J. Chem. Inf. Comput. Sci., 40 (2000) 263.

    Google Scholar 

  5. Ajay, Walters, W.P., Murcko and, M.A., J. Med. Chem., 41 (1998) 3314.

    Google Scholar 

  6. Sadowski, J. and Kubinyi, H., J. Med. Chem., 41 (1998) 3325.

    Google Scholar 

  7. Palm, K, Stenberg, P., Luthmann, K. and Arthursson, P., Pharm. Res., 14 (1997) 568.

    Google Scholar 

  8. Winiwarter, S., Bonham, N.M., Ax, F., Hallberg, A. Lennernas, H. and Karlen, A., J. Med. Chem., 41 (1998) 4939.

    Google Scholar 

  9. Clark, D.E., J. Pharm. Sci., 88 (1999) 807.

    Google Scholar 

  10. Crivori, P., Cruciani, G., Carrupt, P. A. and Testa, B., J. Med. Chem., 43 (2000) 2204.

    Google Scholar 

  11. Keserű, G.M., Molnár, L. and Greiner, I., Comb. Chem. & HTS, 3 (2000) 535.

    Google Scholar 

  12. Wessel, M.D., Jurs, P.C., Tolan, J.W. and Muskal, S.M., J. Chem. Inf. Comput. Sci., 38 (1998) 726.

    Google Scholar 

  13. Yoshida, F. and Topliss, J.G., J. Med. Chem., 43 (2000) 2527.

    Google Scholar 

  14. Smith, D.A. and van de Waterbeemd, H., Curr. Opin. Chem. Biol., 3 (1999) 373.

    Google Scholar 

  15. Keserű, G.M., Balogh, G.T., Czudor, I., Karancsi, T., Fehér, A. and Bertó k, B., J. Agric. Food Chem., 47 (1999) 762.

    Google Scholar 

  16. Lewis, D.F.W., Biochem. Pharmacol., 60 (2000) 293.

    Google Scholar 

  17. Metabolite, MDL Information Systems, San Leandro, CA, USA, 1997.

  18. Pallas for Windows 3.0, Metabolic Prediction Module: MetabolExpert 10.0, CompuDrug Chemistry Ltd, USA, 1998.

  19. de Groot, M.J., Ackland, M.J., Horne, V.A., Alex, A.A. and Jones, B.C., J. Med. Chem., 42 (1999) 4062.

    Google Scholar 

  20. Ekins, S., Bravi, G., Wikel, J.H. and Wrighton, S.A., J. Pharmacol. Exp. Ther., 291 (1999) 424.

    Google Scholar 

  21. Rao, S., Aoyama, R., Schrag, M., Trager, W.F., Rettie A. and Jones, J.P., J. Med. Chem. 43 (2000) 2789.

    Google Scholar 

  22. Harris, D. and Loew G., J. Am. Chem. Soc., 117 (1995) 2738.

    Google Scholar 

  23. Paulsen, M.D. and Ornstein, R.L., Protein Eng., 9 (1996) 567.

    Google Scholar 

  24. Keserű, G.M., Kolossváry, I. and Bertó k, B., J. Am. Chem. Soc., 119 (1997) 5127.

    Google Scholar 

  25. Ortiz de Montellano, P.R. (Ed.) Cytochrome P450 Structure, Mechanism and Biochemistry, Plenum Press, New York, NY, 1995.

    Google Scholar 

  26. Williams, P.A., Cosme, J., Sridhar, V., Johnson, E.F. and McRee, D.E., Mol. Cell, 5 (2000) 121.

    Google Scholar 

  27. Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.

    Google Scholar 

  28. Sybyl version 6.6, Tripos Inc. 1699 South Hanley Road, St. Luis, MI, USA.

  29. Böhm, H.J., J. Comput. Aid. Mol. Des., 8 (1994) 243.

    Google Scholar 

  30. Jones, G., Willett, P. and Glen, R.C., J. Mol. Biol., 245 (1995) 43.

    Google Scholar 

  31. Muegge, I. and Martin, Y.C., J. Med. Chem., 42 (1999) 791.

    Google Scholar 

  32. Meng, C., Shoichet, B.K. and Kuntz, I.D., J. Comp. Chem., 13 (1992) 505.

    Google Scholar 

  33. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.T.J., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  34. Rusinko, A., Sheridan, R.P., Nilakatan, R., Haraki, K.S., Bauman, N. and Venkatarahavan, R., J. Chem. Inf. Comput. Sci., 29 (1989) 251.

    Google Scholar 

  35. Kramer, B., Rarey, M. and Lengauer, T., Proteins: Sturct. Funct. Gen., 37 (1999) 228.

    Google Scholar 

  36. Knegtel, R.M.A., Bayada, D.M., Engh, R.A., von der Saal, W., Geerestein, V.J. and Grootenhuis, P.D.J., J. Comput. Aid. Drug Des., 13 (1999) 167.

    Google Scholar 

  37. Ha, S., Andreani, R., Robbins, A. and Muegge, I., J. Comput. Aid. Drug Des., 14 (2000) 435.

    Google Scholar 

  38. Bissantz, C., Folkers, G. and Rognan, D., J. Med. Chem., 43 (2000) 4759.

    Google Scholar 

  39. De Voss, J.J., Sibbesen, O., Zhang, Z. and Ortiz de Montellano, P.R., J. Am. Chem. Soc., 119 (1997) 5489.

    Google Scholar 

  40. Zhang, Z., Sibbesen, O., Johnson, R.A. and Ortiz de Montellano, P.R., J. Bioorg. Med. Chem., 6 (1998) 1501.

    Google Scholar 

  41. Keserű, G.M., Volk, B. and Balogh, G.T., J. Biomol. Struct. Dyn., 17 (2000) 759.

    Google Scholar 

  42. Human P450 Metabolism database created by Prof. Slobodan Rendic, Zagreb University, Croatia, available at www.gentest.com/human_p450_database/index.html

  43. Keserű, G.M., in preparation

  44. Walters, P.W., Stahl, M.T. and Murcko, M.A., Drug Disc. Today, 3 (1998) 160.

    Google Scholar 

  45. Charifson, P.S., Corkery, J.J., Murcko, M.A. and Walters, W.P., J. Med. Chem., 42 (1999) 5100.

    Google Scholar 

  46. Tame, J.R.H., J. Comput. Aid. Mol. Des., 13 (1999) 99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keserű, G.M. A virtual high throughput screen for high affinity cytochrome P450cam substrates. Implications for in silico prediction of drug metabolism. J Comput Aided Mol Des 15, 649–657 (2001). https://doi.org/10.1023/A:1011911204383

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011911204383

Navigation