Abstract
Let (Z,≤) be a chain and let (Z′,≤′) be its dual chain. Then the length l(Z) of (Z,≤) is the least upper bound of all cardinal numbers which can be order-embedded into (Z,≤) or (Z′,≤′). In particular, a chain is said to be short if its length is not greater than the smallest infinite cardinal. In this paper we shall prove that the cardinality |Z| of a chain (Z,≤) cannot be smaller than l(Z) and not greater than 2l(Z). The inequality |Z|≤2l(Z) is an immediate consequence of a general theorem which combines the structure of a chain with its length. In case of a short chain it follows that its structure may be rather complicated but that its cardinality cannot be greater than the cardinality of the real line.
Similar content being viewed by others
References
Beardon, A. F. (1988) Oral Communication, University of Cambridge, UK.
Beardon, A. F., Candeal, J. C., Herden, G., Indurain, E. and Mehta, G. B. (2001) The nonexistence of a utility function and the structure of non-representable chains, J. Math. Econom., to appear.
Birkhoff, G. and Frink O. (1948) Represantations of lattices by sets, Trans. Amer. Math. Soc. 64, 299-316.
Birkhoff, G. (1967) Lattice Theory, Amer. Math. Soc. Colloq. Publ., Providence, RI.
Candeal, J. C. and Indurain, E. (1993) On the lexicographic behaviour of non representable chains, Preprint, Universidad de Zaragoza (J. C. Candeal).
Candeal, J. C. and Indurain, E. (1996) On the lexicographic behaviour of non representable chains, revised version, Preprint, Universidad de Zaragoza (J. C. Candeal).
Cantor, G. (1895) Beiträge zur Begründung der transfiniten Mengenlehre I, Math. Ann. 46, 481-512.
Cantor, G. (1897) Beiträge zur Begründung der transfiniten Mengenlehre II, Math. Ann. 49, 207-246.
Cuesta-Dutari, N. (1943) Teoría decimal de los tipos de orden, Rev. Mat. Hispano-Americana 3, 186-205, 242-268.
Cuesta-Dutari, N. (1947) Notas sobre unos trabajos de Sierpinski, Rev. Mat. Hispano-Americana 7, 128-131.
Debreu, G. (1954) Representation of a preference ordering by a numerical function, in R. Thrall, C. Coombs and R. Davies (eds.), Decision Processes, Wiley, New York.
Debreu, G. (1964) Continuity properties of Paretian utility, Internat. Econom. Rev. 5, 285-293.
Eilenberg, S. (1941) Ordered topological spaces, Amer. J. Math. 63, 39-45.
Fleischer, I. (1960) Numerical representation of utility, SIAM J. Math. 9, 48-50.
Herden, G. and Mehta, G. B. (2001) Order, topology and utility, Preprint, Universitaet Essen (G. Herden).
Jaffray, J. (1975) Existence of a continuous utility function: an elementary proof, Econometrica 43, 981-983.
Jech, T. J. (1983) Set Theory, North-Holland, Amsterdam.
Mehta, G. B. (1999) Oral communication, University of Brisbane, Australia, November.
Milgram, A. N. (1939) Partially ordered sets, separating systems and inductiveness, in K. Menger (ed.) Reports of a Mathematical Colloquium (second series, No. 1), University of Notre Dame.
Ostaszewski, A. J. (1974) A characterization of compact, separable, ordered spaces, J. London Math. Soc. 7, 758-760.
Rosenstein, J. G. (1982) Linear Orderings, Academic Press, New York.
Sierpinski, W. (1949) Sur une propriété des ensembles ordonnés, Fund. Math. 36, 56-67.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Herden, G., Pallack, A. Interrelations between the Length, the Structure and the Cardinality of a Chain. Order 18, 191–200 (2001). https://doi.org/10.1023/A:1011967103457
Issue Date:
DOI: https://doi.org/10.1023/A:1011967103457