Skip to main content
Log in

Interrelations between the Length, the Structure and the Cardinality of a Chain

  • Published:
Order Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Let (Z,≤) be a chain and let (Z′,≤′) be its dual chain. Then the length l(Z) of (Z,≤) is the least upper bound of all cardinal numbers which can be order-embedded into (Z,≤) or (Z′,≤′). In particular, a chain is said to be short if its length is not greater than the smallest infinite cardinal. In this paper we shall prove that the cardinality |Z| of a chain (Z,≤) cannot be smaller than l(Z) and not greater than 2l(Z). The inequality |Z|≤2l(Z) is an immediate consequence of a general theorem which combines the structure of a chain with its length. In case of a short chain it follows that its structure may be rather complicated but that its cardinality cannot be greater than the cardinality of the real line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beardon, A. F. (1988) Oral Communication, University of Cambridge, UK.

    Google Scholar 

  2. Beardon, A. F., Candeal, J. C., Herden, G., Indurain, E. and Mehta, G. B. (2001) The nonexistence of a utility function and the structure of non-representable chains, J. Math. Econom., to appear.

  3. Birkhoff, G. and Frink O. (1948) Represantations of lattices by sets, Trans. Amer. Math. Soc. 64, 299-316.

    Google Scholar 

  4. Birkhoff, G. (1967) Lattice Theory, Amer. Math. Soc. Colloq. Publ., Providence, RI.

    Google Scholar 

  5. Candeal, J. C. and Indurain, E. (1993) On the lexicographic behaviour of non representable chains, Preprint, Universidad de Zaragoza (J. C. Candeal).

  6. Candeal, J. C. and Indurain, E. (1996) On the lexicographic behaviour of non representable chains, revised version, Preprint, Universidad de Zaragoza (J. C. Candeal).

  7. Cantor, G. (1895) Beiträge zur Begründung der transfiniten Mengenlehre I, Math. Ann. 46, 481-512.

    Google Scholar 

  8. Cantor, G. (1897) Beiträge zur Begründung der transfiniten Mengenlehre II, Math. Ann. 49, 207-246.

    Google Scholar 

  9. Cuesta-Dutari, N. (1943) Teoría decimal de los tipos de orden, Rev. Mat. Hispano-Americana 3, 186-205, 242-268.

    Google Scholar 

  10. Cuesta-Dutari, N. (1947) Notas sobre unos trabajos de Sierpinski, Rev. Mat. Hispano-Americana 7, 128-131.

    Google Scholar 

  11. Debreu, G. (1954) Representation of a preference ordering by a numerical function, in R. Thrall, C. Coombs and R. Davies (eds.), Decision Processes, Wiley, New York.

    Google Scholar 

  12. Debreu, G. (1964) Continuity properties of Paretian utility, Internat. Econom. Rev. 5, 285-293.

    Google Scholar 

  13. Eilenberg, S. (1941) Ordered topological spaces, Amer. J. Math. 63, 39-45.

    Google Scholar 

  14. Fleischer, I. (1960) Numerical representation of utility, SIAM J. Math. 9, 48-50.

    Google Scholar 

  15. Herden, G. and Mehta, G. B. (2001) Order, topology and utility, Preprint, Universitaet Essen (G. Herden).

  16. Jaffray, J. (1975) Existence of a continuous utility function: an elementary proof, Econometrica 43, 981-983.

    Google Scholar 

  17. Jech, T. J. (1983) Set Theory, North-Holland, Amsterdam.

    Google Scholar 

  18. Mehta, G. B. (1999) Oral communication, University of Brisbane, Australia, November.

    Google Scholar 

  19. Milgram, A. N. (1939) Partially ordered sets, separating systems and inductiveness, in K. Menger (ed.) Reports of a Mathematical Colloquium (second series, No. 1), University of Notre Dame.

  20. Ostaszewski, A. J. (1974) A characterization of compact, separable, ordered spaces, J. London Math. Soc. 7, 758-760.

    Google Scholar 

  21. Rosenstein, J. G. (1982) Linear Orderings, Academic Press, New York.

    Google Scholar 

  22. Sierpinski, W. (1949) Sur une propriété des ensembles ordonnés, Fund. Math. 36, 56-67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herden, G., Pallack, A. Interrelations between the Length, the Structure and the Cardinality of a Chain. Order 18, 191–200 (2001). https://doi.org/10.1023/A:1011967103457

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011967103457