Skip to main content
Log in

Estimation and Compensation of Gravity and Friction Forces for Robot Arms: Theory and Experiments

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper considers the estimation and compensation of the unknown gravity force and static friction for robot motion control. Utilizing the stability feature of PD set-point control, the estimates of gravity-related parameters and static friction can be solved from two steady state equations obtained by stopping robots at two nonsingular positions. The estimates obtained can then be used to eliminate the position error. Under a mild assumption that the mass center of each robot link is distributed on a straight line connecting two adjacent joints, the gravity force regression matrix becomes upper-triangle which can significantly simplify the algorithm. The positive experimental result obtained for practical verification is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, C. H., Atkeson, C. G., and Holerbach, C. G.: Estimation of inertial parameters of rigid body links of manipulators, in: Proc. of the 24th CDC, 1985, pp. 990-1002.

  2. Arimoto, S. and Miyazaki, F.: On the stability of PID feedback with sensory information, in: M. Brady and R. P. Paul (eds), Robotics Research, MIT Press, Cambridge, 1984.

    Google Scholar 

  3. Arimoto, S.: Control Theory of Non-linear Mechanical Systems: A Passivity-based and Circuit-theoretic Approach, Oxford Univ. Press, 1996.

  4. Armstrong, B.: Friction: Experimental determination, modeling and compensation, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, 1988, pp. 1422-1427.

  5. Armstrong-Helounry, B., Dopont, P., and Canudas de Wit, C.: A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica 30 (1994), 1083-1138.

    Google Scholar 

  6. Canudas de Wit, C., Astrom, K. J. and Braun, K.: Adaptive friction compensation in DC motor drive, IEEE J. Robotics Automat. 3 (1987), 681-685.

    Google Scholar 

  7. Canudas de Wit, C., Noel, P., Aubin, A., Brogliato B., and Drevet, P.: Adaptive friction compensation in robot manipulators: Low-velocities, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, 1989, pp. 1352-1357.

  8. Canudas de Wit, C., Olsson, H., Astrom K. J., and Lischinsky, P.: A noew model for control of systems with friction, IEEE Trans. Automat. Control 40 (1995), 419-425.

    Google Scholar 

  9. Canudas de Wit, C. and Aubin, A.: Robot parameter identification via sequential hybrid estimation algorithm, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, 1992, pp. 952-957.

  10. Desoer, C. A. and Vidyasagar, M.: Feedback Systems: Input-output Properties, Academic Press, New York, 1975.

    Google Scholar 

  11. Jeon, J. Y., Kim, J. H., and Koh, K.: Experimental evolutionary programming-based high-precision control, IEEE Control Systems Magazine 17 (April 1997), 66-74.

    Google Scholar 

  12. Karnopp, D.: Computer simulation of stick-slip friction in mechanical dynamic systems, ASME J. Dyn. Systems Measm. Control 107 (March 1985), 100-103.

    Google Scholar 

  13. Kim, J. H., Chae, H. K., Jeon, J. Y., and Lee, S. W.: Identification and control of systems with friction using accelerated evolutionary programming, IEEE Control Systems Magazine 16 (August 1996), 38-47.

    Google Scholar 

  14. Kubo, T., Anwar, G., and Tomizuka, M.: Application of nonlinear friction compensation to robot arm control, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, 1986, pp. 722-727.

  15. LaSalle, J. P.: Some extension of Lyapunov's second method, IRE Trans. Circuit Theory 7 (1960), 50-527.

    Google Scholar 

  16. Li, W. and Cheng, X.: Adaptive high-precision control of positioning table-Theory and experiment, IEEE Trans. Control Systems Technology 2 (1994), 265-270.

    Google Scholar 

  17. Liu, M.: PD control-based gravity force estimation and compensation for robot manipulators, in: Proc. of Internat. Symposium on Robotics and Automation, Coahuila, Mexico, December 1998, pp. 121-127.

  18. Liu, M.: PUMA 560 robot arm analogue servo system parameter identification, Technical Report. No. ASR-91-1, Dept. of Mech. and Manufac. Eng., Melbourne University, 1991.

  19. Mayeda, H., Osuka, K., and Kangawa, A.: A new identification method for serial manipulator arms, in: Proc. of IFAC 9th World Congress, 1984, pp. 74-79.

  20. Nasri, H. and Bolmsjo, G.: Parameter estimation of a robotic dynamics model-A statistical approach method, Advanced Robotics 11 (1997), 481-499.

    Google Scholar 

  21. Olsen, H. B. and Bekey, G. A.: Identification of parameters in models of robots with rotary joints, in: Proc. of IEEE Conf. on Robotics and Automation, 1985, pp. 1045-1050.

  22. Ortega, R. and Spong, M. W.: Adaptive motion control of rigid robots: A tutorial, Automatica 25 (1989), 877-888.

    Google Scholar 

  23. Paul, R. P.: Robot Manipulators: Mathematics, Programming, and Control, MIT Press, Cambridge, MA, 1983.

    Google Scholar 

  24. Quach, N. H. and Liu, M.: A 3-step set-point control algorithm for robot arms, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, USA, 2000, pp. 1296-1301.

  25. Sastry, S. and Bodson, M.: Adaptive Control: Stability, Convergence, and Robustness, Prentice-Hall, 1989.

  26. Townsend, W. T. and Salisbury, J. K.: The effect of coulomb friction and stiction on force control, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, 1987, pp. 883-889.

  27. Yang, S. and Tomizuka, M.: Adaptive pulse width control for precise positioning under the influence of stiction and coulomb friction, J. Dyn. Systems Measm. Control 110 (1988), 221-227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Quach, N.H. Estimation and Compensation of Gravity and Friction Forces for Robot Arms: Theory and Experiments. Journal of Intelligent and Robotic Systems 31, 339–354 (2001). https://doi.org/10.1023/A:1012089607929

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012089607929

Navigation