Skip to main content
Log in

Implicit solvation in the self-consistent mean field theory method: sidechain modelling and prediction of folding free energies of protein mutants

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The Atomic Solvation Parameter (ASP) model is one of the simplest models of solvation, in which the solvation free energy of a molecule is proportional to the solvent accessible surface area (SAS) of its atoms. However, until now this model had not been incorporated into the Self-Consistent Mean Field Theory (SCMFT) method for modelling sidechain conformations in proteins. The reason for this is that SAS is a many-body quantity and, thus, it is not obvious how to define it within the Mean Field (MF) framework, where multiple copies of each sidechain exist simultaneously. Here, we present a method for incorporating an SAS-based potential, such as the ASP model, into SCMFT. The theory on which the method is based is exact within the MF framework, that is, it does not depend on a pairwise or any other approximation of SAS. Therefore, SAS can be calculated to arbitrary accuracy. The method is computationally very efficient: only 7.6% slower on average than the method without solvation. We applied the method to the prediction of sidechain conformation, using as a test set high-quality solution structures of 11 proteins. Solvation was found to substantially improve the prediction accuracy of well-defined surface sidechains. We also investigated whether the methodology can be applied to prediction of folding free energies of protein mutants, using a set of barnase mutants. For apolar mutants, the modest correlation observed between calculated and observed folding free energies without solvation improved substantially when solvation was included, allowing the prediction of trends in the folding free energies of this type of mutants. For polar mutants, correlation was not significant even with solvation. Several other factors also responsible for the correlation were identified and analysed. From this analysis, future directions for applying and improving the present methodology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, P.E. and Pettitt, B.M., J. Phys. Chem., 98 (1994) 9700.

    Google Scholar 

  2. Dill, K.A., Biochemistry, 29 (1990) 7133.

    Google Scholar 

  3. Leach, A.R. Molecular Modelling: Principles and Applications. Addison Wesley Longman Ltd., Essex, 1996.

    Google Scholar 

  4. Chan, H.S. and Dill, K.A., Ann. Rev. Biophys. Biomol. Struct., 26 (1997) 425.

    Google Scholar 

  5. Warwicker, J. and Watson, H.C., J. Mol. Biol., 157 (1982) 671.

    Google Scholar 

  6. Warshel, A. and Levitt, M., J. Mol. Biol., 103 (1976) 227.

    Google Scholar 

  7. Lee, B. and Richards, F.M., J. Mol. Biol., 55 (1971) 379.

    Google Scholar 

  8. Herman, R.B., J. Phys. Chem., 76 (1972) 2754.

    Google Scholar 

  9. Chothia, C.H., Nature, 248 (1974) 338.

    Google Scholar 

  10. Reynolds, J.A., Gilbert, D.B. and Tanford, C., Proc. Natl. Acad. Sci. USA, 71 (1974) 2925.

    Google Scholar 

  11. Eisenberg, D. and MacLachlan, A.D., Nature, 319 (1986) 199.

    Google Scholar 

  12. Wesson, L. and Eisenberg, D., Protein Sci., 1 (1992) 227.

    Google Scholar 

  13. Janardhan, A. and Vajda, S., Protein Sci., 7 (1998) 1772.

    Google Scholar 

  14. Wilson, C., Gregoret, L.M. and Agard, D.A., J. Mol. Biol., 229 (1993) 996.

    Google Scholar 

  15. Cregut, D., Liautard, J.-P. and Chiche, L., Protein Eng, 7 (1994) 1333.

    Google Scholar 

  16. Cardozo, T., Totrov, M. and Abagyan, R., Proteins, 23 (1995) 403.

    Google Scholar 

  17. Schiffer, C.A., Caldwell, J.W., Kollman, P.A. and Stroud, R.M., Mol. Simul., 10 (1993) 121.

    Google Scholar 

  18. von Freyberg, B., Richmond, T.J. and Braun, W., J. Mol. Biol., 233 (1993) 275.

    Google Scholar 

  19. Lee, C., J. Mol. Biol., 236 (1994) 918.

    Google Scholar 

  20. Desmet, J., de Maeyer, M., Hazes, B. and Lasters, I., Nature, 356 (1992) 539.

    Google Scholar 

  21. Koehl, P. and Delarue, M., J. Mol. Biol., 239 (1994) 249.

    Google Scholar 

  22. Street, A.G. and Mayo, S.L., Folding & design, 3 (1998) 253.

    Google Scholar 

  23. Voigt, C.A., Gordon, D.B. and Mayo, S.L., J. Mol. Biol., 299 (2000) 789.

    Google Scholar 

  24. Serrano, L., Bycroft, M. and Fersht, A.R., J. Mol. Biol., 218 (1991). 465

    Google Scholar 

  25. Fersht, A., Matouschek, A. and Serrano, L., J. Mol. Biol., 224 (1992). 771

    Google Scholar 

  26. Serrano, L., Kellis Jr., J.T., Cann, P., Matouschek, A. and Fersht, A.R., J. Mol. Biol., 224 (1992) 783.

    Google Scholar 

  27. Serrano, L., Matouschek, A. and Fersht, A.R., J. Mol. Biol., 224 (1992) 805.

    Google Scholar 

  28. Matouschek, A., Serrano, L. and Fersht, A.R., J. Mol. Biol., 224 (1992) 819.

    Google Scholar 

  29. Matouschek, A., Serrano, L., Meiering, E.M., Bycroft, M. and Fersht, A.R., J. Mol. Biol., 224 (1992) 837.

    Google Scholar 

  30. Serrano, L., Matouschek, A. and Fersht, A.R., J. Mol. Biol., 224 (1992) 847.

    Google Scholar 

  31. Hill, T.L. Statistical Mechanics, McGraw-Hill, New York, 1956.

    Google Scholar 

  32. Mendes, J., Soares, C.M. and Carrondo, M.A., Biopolymers, 50 (1999) 111.

    Google Scholar 

  33. Jackson, R.M., Gabb, H.A. and Sternberg, M.J.E., J. Mol. Biol., 276 (1998) 265.

    Google Scholar 

  34. Mendes, J., Baptista, A.M., Carrondo, M.A. and Soares, C.M., Proteins, 37 (1999) 530.

    Google Scholar 

  35. van Gunsteren, W.F. and Berendsen, H.J.C. Groningen molecular simulation (GROMOS) library manual, Biomos B. V., Biomolecular Software, Groningen, The Netherlands, 1987.

    Google Scholar 

  36. Solmajer, T. and Mehler, E.L., Protein Eng., 4 (1991) 911.

    Google Scholar 

  37. Solmajer, T. and Mehler, E.L., Int. J. Quant. Chem., 44 (1992) 291.

    Google Scholar 

  38. Smith, L.J., Mark, A.E., Dobson, C.M. and van Gunsteren, W.F., Biochemistry, 34 (1995) 10918.

    Google Scholar 

  39. Shrake, A. and Rupley, J.A., J. Mol. Biol., 79 (1973) 351.

    Google Scholar 

  40. Wolfenden, R., Andersson, L., Cullis, P.M. and Southgate, C.C.B., Biochemistry, 20 (1981) 849.

    Google Scholar 

  41. Ben-Naim, A., J. Phys. Chem., 82 (1978) 792.

    Google Scholar 

  42. Sharp, K.A., Nicholls, A., Friedman, R. and Honig, B., Biochemistry, 30 (1991) 9686.

    Google Scholar 

  43. Vriend, G., J. Mol. Graph., 8 (1990) 52.

    Google Scholar 

  44. Kendall, M. and Stuart, A. The advanced theory of statistics, Charles Griffin & Company Ltd., London, 1977.

    Google Scholar 

  45. Privalov, P.L. and Makhatadze, G.I., J. Mol. Biol., 232 (1993) 660.

    Google Scholar 

  46. Dill, K.A. and Shortle, D., Ann. Rev. Biochem., 60 (1991) 95.

    Google Scholar 

  47. Shortle, D., FASEB J., 10 (1996) 27.

    Google Scholar 

  48. Gordon, D.B., Marshall, S.A. and Mayo, S.L., Curr. Opin. Struct. Biol., 9 (1999) 509.

    Google Scholar 

  49. Hellinga, H.W. and Richards, F.M., Proc. Natl. Acad. Sci. USA, 91 (1994) 5803.

    Google Scholar 

  50. Baldwin, E.P., Hajiseyedjavadi, O., Baase, W.A. and Matthews, B.W., Science, 262 (1993) 1715.

    Google Scholar 

  51. Eriksson, A.E., Baase, W.A., Zhang, X.J., Heinz, D.W., Blaber, M., Baldwin, E.P. and Matthews, B.W., Science, 255 (1992) 178.

    Google Scholar 

  52. Desjarlais, J.R. and Handel, T.M., J. Mol. Biol., 289 (1999) 305

    Google Scholar 

  53. Harbury, P.B., Tidor, B. and Kim, P.S., Proc. Natl. Acad. Sci. USA, 92 (1995) 8408.

    Google Scholar 

  54. Koehl, P. and Delarue, M., Nature Struct. Biol., 2 (1995) 163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendes, J., Baptista, A.M., Carrondo, M.A. et al. Implicit solvation in the self-consistent mean field theory method: sidechain modelling and prediction of folding free energies of protein mutants. J Comput Aided Mol Des 15, 721–740 (2001). https://doi.org/10.1023/A:1012279810260

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012279810260

Navigation