Skip to main content
Log in

A Dynamic Scale–Space Paradigm

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We present a novel mathematical, physical and logical framework for describing an input image of the dynamics of physical fields, in particular the optic field dynamics. Our framework is required to be invariant under a particular gauge group, i.e., a group or set of transformations consistent with the symmetries of that physical field dynamics enveloping renormalisation groups. It has to yield a most concise field description in terms of a complete and irreducible set of equivalences or invariants. Furthermore, it should be robust to noise, i.e., unresolvable perturbations (morphisms) of the physical field dynamics present below a specific dynamic scale, possibly not covered by the gauge group, do not affect Lyapunov or structural stability measures expressed in equivalences above that dynamic scale. The related dynamic scale symmetry encompasses then a gauge invariant similarity operator with which similarly prepared ensembles of physical field dynamics are probed and searched for partial equivalences coming about at higher scales.

The framework of our dynamic scale-space paradigm is partly based on the initialisation of joint (non)local equivalences for the physical field dynamics external to, induced on and stored in a vision system and represented by an image, possibly at various scales. These equivalences are consistent with the scale-space paradigm considered and permit a faithful segmentation and interpretation of the dynamic scale-space at initial scale. Among the equivalences are differential invariants, integral invariants and topological invariants not affected by the considered gauge group. These equivalences form a quantisation of the external, induced and stored physical field dynamics, and are associated to a frame field, co-frame field, metric and/or connection invariant under the gauge group. Examples of these equivalences are the curvature and torsion two-forms of general relativity, the Burgers and Frank vector density fields of crystal theory (in both disciplines these equivalences measure the inhomogeneity of translational and (affine) rotation groups over space-time), and the winding numbers and other topological charges popping up in electromagnetism and chromodynamics.

Besides based on a gauge invariant initialisation of equivalences the framework of our dynamic scale-space paradigm assumes that a robust, i.e. stable and reproducible, partially equivalent representation of the physical field dynamics is acquired by a multi-scale filtering technique adapted to those initial equivalences. Effectively, the hierarchy of nested structures of equivalences, by definition too invariant under the gauge group, is obtained by applying an exchange principle for a free energy of the physical field dynamics (represented through the equivalences) that in turn is linked to a statistical partition function. This principle is operationalised as a topological current of free energy between different regions of the physical field dynamics. It translates for each equivalence into a process governed by a system of integral and/or partial differential equations (PDES) with local and global initial-boundary conditions (IBC). The scaled physical field dynamics is concisely classified in terms of local and non-local equivalences, conserved densities or curvatures of the dynamic scale-space paradigm that in generally are not coinciding with all initial equivalences. Our dynamic scale-space paradigm distinguishes itself intrinsically from the standard ones that are mainly developed for scalar fields. A dynamic scale-space paradigm is also operationalised for non-scalar fields like curvature and torsion tensor fields and even more complex nonlocal and global topological fields supported by the physical field dynamics. The description of the dynamic scale-spaces are given in terms of again equivalences, and the paradigms in terms of symmetries, curvatures and conservation laws. The topological characteristics of the paradigm form then a representation of the logical framework.

A simple example of a dynamic scale-space paradigm is presented for a time-sequence of two-dimensional satellite images in the visual spectrum. The segmentation of the sequence in fore- and background dynamics at various scales is demonstrated together with a detection of ridges, courses and inflection lines allowing a concise triangulation of the image. Furthermore, the segmentation procedure of a dynamic scale-space is made explicit allowing a true hierarchically description in terms of nested equivalences.

How to unify all the existing scale-space paradigms using our frame work is illustrated. This unification comes about by a choice of gauge and renormalisation group, and setting up a suitable scale-space paradigm that might be user-defined.

How to extend and to generalise the existing scale-space paradigm is elaborated on. This is illustrated by pointing out how to retain a pure topological or covariant scale-space paradigm from an initially segmented image that instead of a scalar field also can represent a density field coinciding with dislocation and disclination fields capturing the cutting and pasting procedures underlying the image formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Adler, A.G.Konheim, and M.H. McAndrew, “Topological entropy, ” Amer. Math. Soc., Vol. 114, pp. 309–319, 1965.

    Google Scholar 

  2. L. Alvarez, F. Guichard, P.L. Lions, and J.M. Morel, “Axiomes et équations fondamentales du traitement d'images, ” C. R. Acad. Sci. Paris, Vol. 315, pp. 135–138, 1992.

    Google Scholar 

  3. L. Alvarez, F. Guichard, P.L. Lions, and J.M. Morel, “Axiomatisation et nouveaux operateurs de la morphologie mathematique, ” C. R. Acad. Sci. Paris, Vol. 315, pp. 265–268, 1992.

    Google Scholar 

  4. L. Alvarez, F. Guichard, P.L. Lions, and J.M. Morel, “Équations fondamentales de l'analyse de films, ” C. R. Acad. Sci. Paris, 1992.

  5. L. Alvarez, F. Guichard, P.L. Lions, and J.M. Morel, “Axioms and fundamental equations of image processing, ” Arch. for Rational Mechanics, Vol. 123, pp. 199–257, 1993.

    Google Scholar 

  6. L. Alvarez and J.M. Morel, “Morphological approach to multiscale analysis, ” in Geometry-Driven Diffusion in Computer Vision, Kluwer Academic Publishers: Dordrecht, 1994, pp. 229–254.

    Google Scholar 

  7. A. Alvarez, J. Weickert, and J. Sánchez, “A scale-space approach to nonlocal optical flow calculations, ” in Scale-Space Theories in Computer Vision, Lecture Notes in Computer Science, Springer: Berlin, 1999, Vol. 1682, pp. 235–246.

    Google Scholar 

  8. L. Ambrosio and H.M. Soner, “Level set approach to mean curvature flow in arbitrary co-dimension, ” Journal of Differential Geometry, Vol. 43, pp. 837–865, 1996.

    Google Scholar 

  9. P.J. Amit, Field Theory, the Renormalisation and Critical Phenomena, McGraw-Hill: New York, 1978.

    Google Scholar 

  10. S.C. Anco and G. Bluman, “Direct construction of conservation laws from field equations, ” Physical Review Letters, Vol. 78, pp. 2869–2873, 1997.

    Google Scholar 

  11. S.C. Anco and G. Bluman, “Direct construction method for conservation laws of partial differential equations, ” 1998.

  12. S.C. Anco and G. Bluman, “Integrating factors and first integrals for ordinary differential equations, ” European Journal of Applied Mathematics, Vol. 9, pp. 245–259, 1998.

    Google Scholar 

  13. J. Babaud, A.P. Witkin, M. Baudin, and R.O. Duda, “Uniqueness of the Gaussian kernel for scale-space filtering, ” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 8, pp. 26–33, 1986.

    Google Scholar 

  14. D. Bar-Natan, “Perturbative aspects of the topological quantum field theory, ” Ph.D. thesis, Princeton University, 1991.

  15. D. Bar-Natan, “On the Vassiliev knot invariants, ” Topology, Vol. 34, pp. 423–472, 1995.

    Google Scholar 

  16. E. Bertin, S. Marchand-Maillet, and J.-M. Chassery, “Optimisation in Voronoi diagrams, ” in Mathematical Morphology and Its Applications to Image Processing. Kluwer Academic Publishers: London, 1994, pp. 209–216.

    Google Scholar 

  17. S. Beucher, “Segmentation d'images et morphologie mathématique, ” Ph.D. thesis, École des Mines, France, 1990.

    Google Scholar 

  18. S. Beucher, “Watershed, hierarchical segmentation and waterfall algorithm, ” in Mathematical Morphology and Its Applications to Image Processing, Kluwer Academic Publishers: Dordrecht, 1994, pp. 69–76.

    Google Scholar 

  19. F. Beukers, J. Sanders, and J. Wang, “One symmetry does not imply integrability, ” Journal of Differential Equations, Vol. 146, pp. 251–260, 1998.

    Google Scholar 

  20. J. Blom, “Topological and geometrical aspects of image structure, ” Ph.D. thesis, Utrecht University, The Netherlands, 1992.

    Google Scholar 

  21. G. Bluman and S. Kumei, “A remarkable nonlinear diffusion equation, ” Journal of Mathematical Physics,Vol. 21, pp. 1019–1023, 1979.

    Google Scholar 

  22. G. Bluman and S. Kumei, Symmetries and Differential Equations, Springer-Verlag: New York, 1989.

    Google Scholar 

  23. A.V. Bocharov, “DELiA: A system for exact analysis of differential equations using S. lie approach, ” Technical Report DELiA 1.5.1, Beaver Soft Programming Team, New York, 1991.

    Google Scholar 

  24. R. Bott and C. Taubes, “On the self-linking of knots, ” Journal of Mathematical Physics, Vol. 35, pp. 5247–5287, 1994.

    Google Scholar 

  25. A.M. Bruckstein and A.N. Netravali, “On differential invariants of planar curves and recognising partially occluded planar shapes, ” in Proc. of Visual Form Workshop, Capri, Italy, 1990.

  26. A.M. Bruckstein, G. Sapiro, and D. Shaked, “Evolutions of planar polygons, ” International Journal of Pattern Recognition and Artificial Intelligence, Vol. 9, pp. 991–1014, 1995.

    Google Scholar 

  27. A.M. Bruckstein and D. Shaked, “On projective invariant smoothing and evolutions of planar curves and polygons, ” Journal of Mathematical Imaging and Vision, Vol. 7, pp. 225–240, 1997.

    Google Scholar 

  28. R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt, and P.A. Griffiths, Exterior Differential Systems, Springer-Verlag: New York, 1991.

    Google Scholar 

  29. P.J. Burt and E.H. Adelson, “The Laplacian pyramid as a compact image code, ” IEEE Trans. Communications, Vol. 9, pp. 532–540, 1983.

    Google Scholar 

  30. E. Calabi, P.J. Olver, C. Shakiban, A. Tannenbaum, and S. Haker, “Differential and numerically invariant signature curves applied to object recognition, ” International Journal of Computer Vision, Vol. 26, pp. 107–135, 1998.

    Google Scholar 

  31. E. Calabi, P.J. Olver, and A. Tannenbaum, “Affine geometry, curve flows, and invariant numerical approximations, ” Adv. in Math., Vol. 124, pp. 154–196, 1996.

    Google Scholar 

  32. G. Calugareanu, “Sur les classes d'isotopie des noeuds tridimensionels et leurs invariants, ” Czechoslovak Math. J., Vol. 11, pp. 588–625, 1961.

    Google Scholar 

  33. E. Cartan, “Les éspaces à connexion conforme, ” Ann. Soc. Plon. Math., Vol. 2, pp. 171–221, 1923.

    Google Scholar 

  34. E. Cartan, Géométrie des Èspaces de Riemann, Gauthiers-Villars: Paris, 1928.

    Google Scholar 

  35. E. Cartan, Lec¸ons sur la Théorie des Èspaces à Connexion Projective, Gauthiers-Villars: Paris, 1937.

    Google Scholar 

  36. E. Cartan, La Théorie des Groupes Finis et Continus et la Géometrie Différentielle traitées par la Méthode du Répère Mobile, Gauthiers-Villars: Paris, 1937.

    Google Scholar 

  37. E. Cartan, “Les problèmes d'équivalence, ” in Oeuvres Complètes, Gauthiers-Villars: Paris, 1952, Vol. 2, pp. 1311–1334.

    Google Scholar 

  38. E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée, Gauthiers-Villars: Paris, 1955.

    Google Scholar 

  39. E. Cartan, Lec¸ons sur la Géométrie des Espaces de Riemann, Gauthier-Villars: Paris, 1963.

    Google Scholar 

  40. V. Caselles, F. Catté, T. Coll, and F. Dibos, “A geometric model for active contours, ” Numerische Mathematik, Vol. 66, pp. 1–31, 1993.

    Google Scholar 

  41. F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll, “Image selective smoothing and edge detection by nonlinear diffusion, ” SIAM J. Num. Anal., Vol. 29, pp. 182–193, 1992.

    Google Scholar 

  42. R. Claypoole, G. Davis, W. Sweldens, and R. Baraniuk, “Nonlinear wavelet transform for image coding, ” in Proceedings of the 31-st Asilomar Conference on Singals, Systems, and Computers, Vol. 1, 1997, pp. 662–667.

    Google Scholar 

  43. A. Connes, Géométrie non commutative, InterEditions: Paris, 1990.

    Google Scholar 

  44. J.L. Crowley, “A representation for visual information, ” Ph.D. thesis, Carnegie-Mellon University, Robotics Institute, Pittsburgh, Pennsylvania, 1981.

    Google Scholar 

  45. J. Damon, “Local Morse theory for solutions to the heat equation and Gaussian blurring, ” Jour. Diff. Eqtns., 1993.

  46. R.W.R. Darling, Differential Forms and Connections, Cambridge University Press: New York, 1994.

    Google Scholar 

  47. D.L. Donoho, “Anisotropy scaling and discontinuities along curves, ” in Scale-Space Theories in Computer Vision, Lecture Notes in Computer Science, Springer: Berlin, Vol. 1682, 1999.

    Google Scholar 

  48. D.M. Dubois (Ed.), First International Conference on Computing Anticipatory Systems: CASYS'97, AIP Conference ProceedingsVol. 437, American Institute of Physics, College Park, MD, 1998.

    Google Scholar 

  49. D.M. Dubois (Ed.), Second International Conference on Computing Anticipatory Systems: CASYS'98, AIP Conference Proceedings Vol.465, American Institute of Physics, College Park, MD, 1999.

    Google Scholar 

  50. C.N. de Graaf, S.M. Pizer, A.Toet, J.J.Koenderink, P. Zuidema, and P.P. van Rijk, “Pyramid segmentation of medical 3D images, ” in Medical Computer Graphics and Image Communications, 1984, pp. 71–77.

  51. D.H. Eberly, “Geometric methods for analysis of ridges in ndimensional images, ” Ph.D. Thesis, Department of Computer Vision, The University of North Carolina, Chapel Hill, North Carolina, 1994.

    Google Scholar 

  52. S.D. Eidel'Man, Parabolic Systems, North-Holland Publishing Company andWolters-Noordhoff Publishing: Amsterdam, 1962.

    Google Scholar 

  53. EUMETSAT, User Handbook, meteorological archive and retrieval facilities edition, issue 2, 1998.

  54. A.V. Evako, R. Kopperman, and Y.V. Mukhin, “Dimensional properties of graphs and digital spaces, “ Journal of Mathematical Imaging and Vision, Vol. 6, pp. 109–119, 1996.

    Google Scholar 

  55. O. Faugeras, “Cartan's moving frame method and its applications to the geometry and evolution of curves in the Euclidean, affine and projective planes, ” in Applications of Invariance in Computer Vision, Lecture Notes in Computer Science, Springer-Verlag: Berlin, 1994, Vol. 825, pp. 11–46, 1994.

    Google Scholar 

  56. O. Faugeras and R. Keriven, “Scale-spaces and affine curvature, ” in Proceedings Europe-China Workshop on Geometric Modelling and Invariants for Computer Vision, 1995, pp. 17–24.

  57. O. Faugeras and R. Keriven, “Some recent results on the projective evolution of 2-D curves, ” in Proceedings of the International Conference on Image Processing, Lausanne, Switzerland, 1995, Vol. III, pp. 13–16.

    Google Scholar 

  58. J. Favard, Cours de Géométrie Différentielle Locale, Gauthier-Villars: Paris, 1957.

    Google Scholar 

  59. M. Fels and P. Olver, “Moving co-frames, I: A practical algorithm, ” Acta Appl. Math., Vol. 51, pp. 161–213, 1998.

    Google Scholar 

  60. M. Fels and P. Olver, “Moving co-frames, II: Regularisation and theoretical foundations, ” Acta Appl. Math., Vol. 55, pp. 127–208, 1999.

    Google Scholar 

  61. L.M.J. Florack, B.M. ter Haar Romeny, J.J. Koenderink, and M.A. Viergever, “Families of tuned scale-space kernels, ” in Proceedings of the European Conference on Computer Vision, 1992, pp. 19–23.

  62. L.M.J. Florack, B.M. ter Haar Romeny, J.J. Koenderink, and M.A. Viergever, “Cartesian differential invariants in scale-space, ” Journal of Mathematical Imaging and Vision, Vol. 3, pp. 327–348, 1993.

    Google Scholar 

  63. L.M.J. Florack, “The syntactical structure of scalar images, ” Ph.D. thesis, Utrecht University, The Netherlands, 1993.

    Google Scholar 

  64. L.M.J. Florack, A.H. Salden, B.M. ter Haar Romeny, J.J. Koenderink, and M.A. Viergever, “Nonlinear scale-space, ” in Geometry-Driven Diffusion in Computer Vision, Kluwer Academic Publishers: Dordrecht, 1994, pp. 339–370.

    Google Scholar 

  65. L.M.J. Florack, A.H. Salden, B.M. ter Haar Romeny, J.J. Koenderink, and M.A.Viergever, “Nonlinear scale-space, ” Image and Vision Computing, Vol. 13, pp. 279–294, 1995.

    Google Scholar 

  66. L.M.J. Florack, Image Structure, Vol. 10 of Computational Imaging and Vision Series, Kluwer Academic Publishers: Dordrecht, 1996.

    Google Scholar 

  67. L.M.J. Florack and M. Nielsen, “The intrinsic structure of the optic flow field, ” International Journal of Computer Vision, Vol. 27, pp. 263–286, 1998.

    Google Scholar 

  68. L.M.J. Florack and A. Kuijper”, “The topological structure of scale-space images, ” Journal of Mathematical Imaging and Vision, Vol. 12, pp. 65–79, 2000.

    Google Scholar 

  69. M. Freedman, Z.-X. He, and Z. Wang, “Möbius energies of knots and unknots, ” Ann. Math., Vol. 139, pp. 1–50, 1994.

    Google Scholar 

  70. J. Gårding, “Shape from texture for smooth curved surfaces in perspective projection, ” Journal of Mathematical Imaging and Vision, Vol. 2, pp. 329–352, 1992.

    Google Scholar 

  71. J.Gårding and T. Lindeberg, “Direct estimation of local surface shape in a fixating binocular vision system, ” in Proceedings European Conference on Computer Vision, Lecture Notes in Computer Science, Springer-Verlag: Berlin, 1994, Vol. 800, pp. 365–376.

    Google Scholar 

  72. R.B. Gardner, The Method of Equivalence and Its Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1989.

    Google Scholar 

  73. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, ” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 6, pp. 721–741, 1984.

    Google Scholar 

  74. V.P. Gerdt and A.Y. Zharkov, in Proc. ISSAC'90, 1990, pp. 250–254.

  75. G. Gerig, O. Kübler, R. Kikinis, and F.A. Jolesz. ”Nonlinear anisotropic filtering of MRI data, ” IEEE Transactions on Medical Imaging, Vol. 11, pp. 221–232, 1992.

    Google Scholar 

  76. C.R. Giardina and E.R. Dougherty (Eds.), Morphological Methods in Image and Signal Processing, Prentice-Hall: Englewood Cliffs, 1988.

  77. Ñ. Göktas, H.W. Hereman, and G. Erdmann, “Computation of conserved densities for systems of nonlinear differentialdifference equations, ” Physics Letters A, Vol. 236, pp. 30–38, 1997.

    Google Scholar 

  78. Ñ, Göktas and W. Hereman, “Computation of conserved densities for systems of nonlinear differential-difference equations, ” Journal of Symbolic Computation, Vol. 24, pp. 591–621, 1997.

    Google Scholar 

  79. Ñ, Göktas and W. Hereman, “Computation of conserved densities for nonlinear lattices, ” Physica D, Vol. 123, pp. 425–436, 1998.

    Google Scholar 

  80. M.L. Green, “The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces, ” Duke Mathematical Journal, Vol. 45, pp. 735–779, 1978.

    Google Scholar 

  81. U. Grenander, Lectures in Pattern Theory I, II and III: Pattern Analysis, Pattern Synthesis and Regular Structures, Springer-Verlag: Berlin, 1976–81.

    Google Scholar 

  82. G.E. Healey and S.A. Shafer (Eds.), Physics-based Vision: Principles and Practice; Colour, Jones and Bartlett Publishers: Boston, London, 1992.

    Google Scholar 

  83. F.W. Hehl, J. Dermott McCrea, and E.W. Mielke, Weyl Spacetimes, The Dilation Current, And Creation Of Gravitating Mass By Symmetry Breaking, Verlag Peter Lang: Frankfurt, 1988, pp. 241–311.

  84. H.J.A.M. Heijmans, “Mathematical morphology: A geometrical approach in image processing, ” Nieuw Archief voor Wiskunde, Vol. 10, pp. 237–276, 1992.

    Google Scholar 

  85. H.J.A.M. Heijmans, “Mathematical morphology as a tool for shape description, ” in Proc. of the NATO Advanced Research Workshop Shape in Picture-Mathematical Description of Shape in Grey-Level Images, Vol. 126 of NATO ASI Series F, pp. 147–176, 1994.

  86. H.J.A.M. Heijmans (Ed.), Morphological Image Operators, Academic Press: San Diego, 1994.

    Google Scholar 

  87. Y. Hel-Or, S. Peleg, and D. Avnir, “Charaterization of righthanded and left-handed shapes, ” in Proceedings CVGIP:IU, 1991, Vol. 53, pp. 297–302.

    Google Scholar 

  88. Y. Hel-Or and P. Teo, “Canonical decomposition of steerable filters, ” Journal of Mathematical Imaging and Vision, Vol. 9, pp. 83–95, 1998.

    Google Scholar 

  89. W. Hereman, Ñ. Göktas, and A. Miller, “Algorithmic integrability tests for nonlinear differential and lattice equations, ” Computer Physics Communications, Vol. 115, pp. 428–446, 1998.

    Google Scholar 

  90. G.T. Herman and Z. Enping, “Jordan surfaces in simply connected digital spaces, ” Journal of Mathematical Imaging and Vision, Vol. 6, pp. 121–138, 1996.

    Google Scholar 

  91. D. Hilbert, Theory of Algebraic Invariants, Cambridge University Press: New York, 1993.

    Google Scholar 

  92. D.H. Hubel and T.N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex, ” Journal of Physiology, Vol. 160, pp. 106–154, 1962.

    Google Scholar 

  93. R.A. Hummel, “The scale-space formulation of pyramid data structures, ” in Parallel Computer Vision, Academic Press: New York, 1987, pp. 187–123.

    Google Scholar 

  94. T. Iijima, “Basic theory on the normalisation of a pattern, ” Bulletin of Electrical Laboratory, Vol. 26, pp. 368–388, 1962.

    Google Scholar 

  95. T. Iijima, “Basic equation of figure and observational transformation, ” Transactions of the Institute of Electronics and Communication Engineers of Japan, Vol.54-C(11), pp. 37–38, 1971.

    Google Scholar 

  96. T. Iijima, “Basic theory on the construction of figure space, ” Transactions of the Institute of Electronics and Communication Engineers of Japan, Vol. 54-C(8), pp. 35–36, 1971.

    Google Scholar 

  97. T. Iijima, “Asuppression kernel of a figure and its mathematical characteristics, ” Transactions of the Institute of Electronics and Communication Engineers of Japan, Vol. 54-C(9), pp. 30–31, 1971.

    Google Scholar 

  98. T. Iijima, “Basic theory on normalisation of figure, ” Transactions of the Institute of Electronics and Communication Engineers of Japan, Vol. 54-C(11), pp. 24–25, 1971.

    Google Scholar 

  99. T. Iijima, “A system of fundamental functions in an abstract figure space, ” Transactions of the Institute of Electronics and Communication Engineers of Japan, Vol. 54-C(11), pp. 26–27, 1971.

    Google Scholar 

  100. T. Iijima, “Basic theory on feature extraction of figures, ” Transactions of the Institute of Electronics and Communication Engineers of Japan, Vol. 54-C(12), pp. 35–36, 1971.

    Google Scholar 

  101. T. Iijima, “Basic theory on the structural recognition of a figure, ” Transactions of the Institute of Electronics and Communication Engineers of Japan, Vol. 55-D(8), pp. 28–29, 1972.

    Google Scholar 

  102. T. Iijima, “Theoretical studies on the figure identification by pattern matching, ” Transactions of the Institute of Electronics and Communication Engineers of Japan, Vol. 54-D(8), pp. 29–30, 1972.

    Google Scholar 

  103. B. Jawerth and W. Sweldens, “An overview of the theory and applications of wavelets, ” in Proc. of the NATO Advanced ResearchWorkshop Shape in Picture-Mathematical Description of Shape in Grey-Level Images, Vol. 126 of NATO ASI Series F, 1994, pp. 249–274.

  104. G.R. Jensen, Higher Order Contact of Submanifolds of Homogeneous Spaces, Springer-Verlag: Berlin, 1977.

    Google Scholar 

  105. P. Johansen, S. Skelboe, K. Grue, and J.D. Andersen, “Representing signals by their top-points in scale-space, ” in Proceedings of the 8-th International Conference on Pattern Recognition, 1986, pp. 215–217.

  106. P. Johansen, “On the classification of top-points in scale-space, ” Journal of Mathematical Imaging and Vision, Vol. 4, pp. 57–68, 1994.

    Google Scholar 

  107. J.-J. Jolion and A. Rozenfeld, A Pyramid Framework for Early Vision, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994.

    Google Scholar 

  108. A. Kadi and D.G.B. Edelen, A Gauge Theory of Dislocations and Disclinations, Springer-Verlag: Berlin, 1983.

    Google Scholar 

  109. S.N. Kalitzin, B.M. ter Haar Romeny, A.H. Salden, P.F.M. Nacken and M.A. Viergever, “Topological numbers and singularities in scalar images; scale-space evolution properties, ” Journal of Mathematical Imaging and Vision, Vol. 9, pp. 253–269, 1998.

    Google Scholar 

  110. S.N. Kalitzin, B.M. ter Haar Romeny, and M.A. Viergever, “Invertible orientation bundles on 2D scalar images, ” in Scale-Space Theories in ComputerVision, Lecture Notes in Computer Science, Springer-Verlag: Berlin, 1997, Vol. 1252, pp. 77–88.

    Google Scholar 

  111. S.N. Kalitzin, B.M. ter Haar Romeny, and M.A. Viergever, “On topological deep-structure segmentation, ” in Proceedings International Conference on Image Processing, pp. 863–866, 1997.

  112. S.N. Kalitzin, B.M. ter Haar Romeny, and M.A. Viergever, “Invertible apertured orientation filters in image image analysis, ” International Journal of Computer Vision, Vol. 31, pp. 145–158, 1999.

    Google Scholar 

  113. S.N. Kalitzin, J. Staal, B.M. ter Haar Romeny, and M.A. Viergever, “Frame-relative critical point-sets in image analysis, ” in Proc. Conf. on Computer Analysis of Images and Patterns, CAIP99, Lecture Notes in Computer Science, Vol. 1354, Springer-Verlag, Lijubljana, Slovenia, in press.

  114. N. Kamran, R. Milson, and P.J. Olver, “Invariant modules and the reduction of nonlinear partial differential equations to dynamical systems, ” Adv. in Math., to appear.

  115. M. Kass, A.Witkin, and D. Terzopoulos, “Snakes: Active contour models, ” in Proc. IEEEFirst Int. Comp.Vision Conf., 1987, pp. 259–268.

  116. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press: NewYork, 1995.

    Google Scholar 

  117. L.H. Kauffman, “Noncommutativity and discrete physics, ” Physica D, pp. 125–138, 1998.

  118. R.K. Kaul, “Chern-Simons theory, knot invariants, vertex models and three-manifold invariants, ” in Frontiers of Field Theory, Quantum Gravity and Strings, Puri, India, 1996. Report IMSc-98/04/15, Institute of Mathematical Sciences, Taramani, Madras, India.

    Google Scholar 

  119. A. Khinchine, Mathematical Foundations of Information Theory, Dover Publications: New York, 1957.

    Google Scholar 

  120. S. Kichenassamy, A. Kumar, P.J. Olver, A. Tannenbaum, and A. Yezzi, “Conformal curvature flows: From phase transitions to active vision, ” Arch. Rat. Mech. Anal.,Vol. 134, pp. 275–301, 1996.

    Google Scholar 

  121. B.B. Kimia, “Towards a computational theory of Shape, ” Ph.D. thesis, Department of Electrical Enginering, McGill University, Montreal, Canada, 1990.

    Google Scholar 

  122. B. Kimia, A. Tannenbaum, and S. Zucker, “On optimal control methods in computer vision and image processing, ” in Geometry-Driven Diffusion in ComputerVision, 1994, pp. 307–338.

  123. B.B. Kimia, A. Tannenbaum, and S.W. Zucker, “Shapes, shocks, and deformations, I, ” International Journal of Computer Vision, Vol. 15, pp. 189–224, 1994.

    Google Scholar 

  124. R. Kimmel, K. Siddiqi, B.B. Kimia, and A. Bruckstein, “Shape from shading: Level set propagation and viscosity solutions, ” International Journal of Computer Vision, Vol. 16, pp. 107–133, 1995.

    Google Scholar 

  125. H. Kleinert, Gauge Fields in Condensed Matter, Vol. 1–2. World Scientific Publishing: Singapore, 1989.

    Google Scholar 

  126. Jan J. Koenderink, “A hitherto unnoticed singularity of scale-space, ” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 11, pp. 1222–1224, 1989.

    Google Scholar 

  127. J.J. Koenderink, “The structure of images, ” Biol. Cybern., Vol. 50, pp. 363–370, 1984.

    Google Scholar 

  128. J.J. Koenderink, “Scale-time, ” Biol. Cybern., Vol. 58, pp. 159–162, 1988.

    Google Scholar 

  129. J.J. Koenderink and W. Richards, “Two-dimensional curvature operators, ” Journal of the Optical Society of America-A, Vol. 5, pp. 1136–1141, 1988.

    Google Scholar 

  130. J.J. Koenderink and A.J. van Doorn, “A description of the structure of visual images in terms of an ordered hierarchy of light and dark blobs, ” in Second Int. Visual Psychophysics and Medical Imaging Conf., IEEE Cat. No. 81 CH 1676–6, 1981.

  131. J.J. Koenderink and A.J. van Doorn, “Dynamic shape, ” Biol. Cybern., Vol. 53, pp. 383–396, 1986.

    Google Scholar 

  132. J.J. Koenderink and A.J. van Doorn, “Local features of smooth shapes: Ridges and courses, ” in Proc. SPIE Geometric Methods in Computer Vision II, Vol. 2031, pp. 2–13, 1993.

    Google Scholar 

  133. H.J. Kushner, Probability Methods for Approximations In Stochastic Control and For Elliptic Equations, Vol. 129 of Mathematics In Science And Engineering, Academic Press: New York, 1977.

    Google Scholar 

  134. A. Lakhtakia, V.K.Varadan, and V.V.Varadan, Time-Harmonic Electromagnetic Fields in Chiral Media, Lecture Notes in Physics, Springer-Verlag: Berlin, 1989, Vol. 335.

    Google Scholar 

  135. C. Landi and P. Frosini, “Size functions and morphological transformations, ” Acta Applicandae Mathematicae,Vol. 49, pp. 85–104, 1997.

    Google Scholar 

  136. T. Lindeberg, “Scale-space for discrete signals, ” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 12, pp. 234–245, 1990.

  137. T. Lindeberg and J. Gårding, “Shape from texture from a multiscale perspective, ” in Proceedings 4th International Conference on Computer Vision, 1993, pp. 683–691.

  138. T. Lindeberg, Scale-Space Theory in Computer Vision, The Kluwer International Series in Engineering and Computer Science., Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994.

    Google Scholar 

  139. T. Lindeberg and J. Gårding, “Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D structure, ” in Proceedings European Conference on Computer Vision, Lecture Notes in Computer Science, Springer-Verlag: Berlin, 1994, Vol. 800, pp. 389–400.

    Google Scholar 

  140. T. Lindeberg, “Direct estimation of affine deformations of brightness patterns using visual front-end operators with automatic scale selection, ” in Proc. 5th International Conference on Computer Vision, 1995, pp. 134–141. I

  141. I. Lisle, “Equivalence transformations for classes of differential equations, ” Ph.D. thesis, University of British Columbia, Vancouver, Canada, 1992.

    Google Scholar 

  142. M. Nielsen, R. Maas, W.J. Niessen, L.M.J. Florack, and B.M. ter Haar Romeny, “Binocular stereo from grey-scale image, ” Journal of Mathematical Imaging and Vision, Vol. 10, pp. 103–122, 1999.

    Google Scholar 

  143. R. Malladi, J.A. Sethian, and B.C. Vemuri, “A fast level set based algorithm for topology-independent shape modelling, ” Journal of Mathematical Imaging and Vision, Vol. 6, pp. 269–289, 1996.

    Google Scholar 

  144. S.G. Mallat, “A theory for multiresolution signal decomposition: Thewavelet representation, ” IEEE Trans.Pattern Analysis and Machine Intelligence, Vol. 11, pp. 674–694, 1989.

    Google Scholar 

  145. G. Matheron, Random Sets and Integral Geometry, Wiley: New York, 1975.

    Google Scholar 

  146. M.H. McAndrew and C.A. Osborne, “A survey of algebraic methods in digital topology, ” Journal of Mathematical Imaging and Vision, Vol. 6, pp. 139–159, 1996.

    Google Scholar 

  147. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, “Equation of the state calculations by fast computing machine, ” Journal of Chemical Physics, Vol. 21, pp. 1087–1091, 1953.

    Google Scholar 

  148. F. Meyer, “Minimum spanning forests for morphological segmentation, ” Mathematical Morphology and Its Applications to Image Processing, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994, pp. 77–84.

    Google Scholar 

  149. F. Mokhtarian and A. Mackworth, “Scale-based description of planar curves and two-dimensional shapes, ” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 8, pp. 34–43, 1986.

    Google Scholar 

  150. T. Moons, E. Pauwels, L. Van Gool, and A. Oosterlinck, “Foundations of semi-differential invariants, ” Journal of Mathematical Imaging and Vision, Vol. 14, pp. 25–47, 1995.

    Google Scholar 

  151. D. Mumford and J. Shah, “Boundary detection by minimising functionals, ” in Proceedings IEEE Conference on Computer Vision and Pattern Recognition, 1985, pp. 22–26.

  152. D. Mumford and J. Shah, “Optimal approximations by piecewise smooth functions and associated variational problems, ” Communications on Pure and Applied Mathematics,Vol. XLII, pp. 577–685, 1989.

    Google Scholar 

  153. D. Mumford, “Bayesian rationale for the variational formulation, ” in Geometry-Driven Diffusion in Computer Vision, Computational Imaging and Vision, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994, pp. 135–146.

    Google Scholar 

  154. D. Mumford, “The statistical description of visual signals, ” in ICIAM 95, Akademie Verlag: Berlin, 1996.

    Google Scholar 

  155. D. Mumford, “Pattern Theory: A unifying perspective, ” in Perception as Bayesian Inference, Cambridge University Press: New York, 1996, pp. 25–62.

    Google Scholar 

  156. C. Nash, Differential Topology and Quantum Field Theory, Academic Press: London, 1990.

    Google Scholar 

  157. M. Newman, “A fundamental group for grey-scale digital images, ” Journal of Mathematical Imaging and Vision, Vol. 6, pp. 139–159, 1996.

    Google Scholar 

  158. W.J. Niessen, J.S. Duncan, L.M.J. Florack, B.M. ter Haar Romeny, and M.A. Viergever, “Spatiotemporal operators and optic flow, ” in Physics-Based Modeling in Computer Vision, pp. 78–84, 1995.

  159. M. Nitzberg and T. Shiota, “Nonlinear image filtering with edge and corner enhancement, ” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 14, pp. 826–833, 1992.

    Google Scholar 

  160. N. Nordström, “Biased anisotropic diffusion-a unified regularisation and diffusion approach to edge detection, ” Image and Vision Computing, Vol. 8, pp. 318–327, 1990.

    Google Scholar 

  161. N. Nordström, Variational Edge Detection, Ph.D. thesis, University of California at Berkeley, May 1990.

  162. P.J. Olver, Applications of Lie Groups to Differential Equations, Vol. 107 of Graduate Texts in Mathematics, Springer-Verlag: Berlin, 1986.

    Google Scholar 

  163. P.J. Olver, “Invariant theory, equivalence problems and the calculus of variations, ” in Invariant Theory and Tableaux, IMA Volumes in Mathematics and Its Applications, Springer-Verlag: Berlin, 1990, Vol. 19, pp. 59–81.

    Google Scholar 

  164. P.J. Olver, G. Sapiro, and A. Tannenbaum, “Classification and uniqueness of invariant geometric flows, ” Comptes Rendus Acad. Sci. (Paris), Serie I, Vol. 319, pp. 339–344, 1994.

    Google Scholar 

  165. P. Olver, G. Sapiro, and A. Tannenbaum, “Differential invariant signatures and flows in computer vision:A symmetry group approach, ” in Geometry-Driven Diffusion in Computer Vision, Computational Imaging and Vision, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994, pp. 255–306.

    Google Scholar 

  166. P. Olver, Equivalence, Invariants, and Symmetry, Cambridge University Press: New York, 1995.

    Google Scholar 

  167. P.J. Olver, G. Sapiro, and A. Tannenbaum, “Invariant geometric evolutions of surfaces and volumetric smoothing, ” SIAM J. Appl. Math., Vol. 57, pp. 176–194, 1997.

    Google Scholar 

  168. P.J. Olver, G. Sapiro, and A. Tannenbaum, “Affine invariant edge maps and active contours, ” Acta Appli. Math., to appear.

  169. S. Osher and J.A. Sethian, “Fronts propagating with curvature dependent speed: Algorithms based on the Hamilton-Jacobi formalism, ” J. Computational Physics, Vol. 79, pp. 12–49, 1988.

    Google Scholar 

  170. L.V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press: New York, 1982.

    Google Scholar 

  171. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion, ” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 12, pp. 629–639, 1990.

    Google Scholar 

  172. R.A. Pielke. Meso-scale Meteorological Modeling, Academic Press: New York, 1984.

    Google Scholar 

  173. S. Piunikhin, “Weights of Feynman diagrams, link polynomials and Vassiliev knot invariants, ” Journal of Knot Theory and its Ramifications, Vol. 4, pp. 163–188, 1995.

    Google Scholar 

  174. W.F. Pohl. “The self-linking number of a closed space curve, ” Journal of Mathematics and Mechanics, Vol. 17, pp. 975–985, 1968.

    Google Scholar 

  175. J.F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach: New York, 1978.

    Google Scholar 

  176. J.F. Pommaret, Differential Galois Theory, Gordon and Breach: New York, 1983.

    Google Scholar 

  177. J.F. Pommaret, Lie Pseudogroups and Mechanics, Gordon and Breach: New York, 1988.

    Google Scholar 

  178. L. Pontryagin, Topological Groups, Princeton University Press: Princeton, N.J., 1946.

    Google Scholar 

  179. F. Preteux, “Watershed and skeleton by influence zones: A distance-based approach, ” Journal of Mathematical Imaging and Vision, Vol. 1, pp. 239–256, 1992.

    Google Scholar 

  180. M. Proesmans, E. Pauwels, and L. Van Gool, “Coupled geometry-driven diffusion equations for low level vision, ” in Geometry-Driven Diffusion in Computer Vision, Computational Imaging and Vision, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994, pp. 191–228.

    Google Scholar 

  181. T. Richardson and S. Mitter, “Approximation, computation, and distortion in the variational formulation, ” in Geometry-Driven Diffusion in Computer Vision, Computational Imaging and Vision, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994, pp. 169–190.

    Google Scholar 

  182. J.H. Rieger, “Generic evolutions of edges on families of diffused grey-value surfaces, ” Journal of Mathematical Imaging and Vision, Vol. 5, pp. 207–217, 1995.

    Google Scholar 

  183. R. Rosen, Anticipatory Systems, Pergamon, New York, 1985.

    Google Scholar 

  184. R. Rothe, “Zum problem des talwegs, ” Sitz. ber. d. Berliner Math. Gesellschaft, Vol. 14, pp. 51–69, 1915.

    Google Scholar 

  185. N. Rougon and F. Preteux, “Deformable markers: Mathematical morphology for active contour models control, ” in Proceedings SPIE's International Symposium on Optical Applied Science and Engineering-Image Algebra and Morphological Image Processing II, Vol. 1568, pp. 78–89, 1991.

    Google Scholar 

  186. N. Rougon, “ Élements pour la réconnaissance des formes tridimensionnelles déformables. Applications à l'imagerie biomédicale, ” Ph.D. thesis, Telecom Paris-Department Images, Paris: France, 1993.

    Google Scholar 

  187. N. Rougon, “On mathematical foundations of local deformation analysis, ” in Proceedings SPIE's International Symposium on Optical Applied Science and Engineering-Mathematical Methods in Medical Imaging II, Vol. 2035, pp. 2–13, 1993.

    Google Scholar 

  188. N. Rougon, “Geometric Maxwell equations and the structure of diffusive scale-spaces, ” in Proceedings SPIE Conference on Morphological Image Processing and Random Image Modeling-SPIE's 1995 International Symposium on Optical Science, Engineering and Instrumentation,Vol. 2568, pp. 151–165, 1995.

    Google Scholar 

  189. L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms, ” in Modelisations Matematiques pour le traitement d'images, 149–179. INRIA, 1992.

  190. L.I. Rudin and S. Osher, “Total variation based image restoration with free local constraints, ” in Proc. First IEEE Internat. Conf. on Image Processing, 1994, pp. 13–16.

  191. A.H. Salden, B.M. ter Haar Romeny, and M.A. Viergever, “Local and multilocal scale-space description, ” in Proc. of the NATO Advanced Research Workshop Shape in Picture-Mathematical Description of Shape in Grey-Level Iimages,Vol. 126 of NATO ASI Series F, Berlin, 1994, pp. 661–670.

  192. A.H. Salden, L.M.J. Florack, B.M. ter Haar Romeny, J.J.Koenderink, and M.A. Viergever, “Multi-scale analysis and description of image structure, ” Nieuw Archief voor Wiskunde, Vol. 10, pp. 309–326, 1992.

    Google Scholar 

  193. A.H. Salden, B.M. ter Haar Romeny, L.M.J. Florack, J.J.Koenderink, and M.A. Viergever, “A complete and irreducible set of local orthogonally invariant features of 2-dimensional images, ” in Proceedings 11th IAPR Internat. Conf. on Pattern Recognition, The Hague, The Netherlands, 1992, pp. 180–184.

  194. A.H. Salden, B.M. ter Haar Romeny, and M.A. Viergever, “Image structure generating normalised geometric scale spaces, ” in Volume Image Processing '93, pp. 141–143, Utrecht, The Netherlands, 1993.

  195. A.H. Salden, B.M. ter Haar Romeny, and M.A. Viergever, “Modern geometry and dynamic scale-space theories, ” in Proc. Conf. on Differential Geometry and Computer Vision: From Pure over Applicable to Applied Differential Geometry, Nordfjordeid, Norway, 1995, in press.

  196. A.H. Salden, “Dynamic Scale-Space Paradigms, ” Ph.D. thesis, Utrecht University: The Netherlands, 1996.

    Google Scholar 

  197. A.H. Salden, “Invariant theory, ” in Gaussian Scale-Space Theory, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996.

    Google Scholar 

  198. A.H. Salden, B.M. ter Haar Romeny, and M.A.Viergever, “Dynamic scale-space theories, ” in Scale-Space 97, First International Conference on Scale-Space Theory in Computer Vision, Utrecht, the Netherlands, 1997, pp. 248–259.

  199. A.H. Salden, B.M. ter Haar Romeny, and M.A.Viergever, “Differential and integral geometry of linear scale spaces, ” Journal of Mathematical Imaging and Vision, Vol. 9, pp. 5–27, 1996.

    Google Scholar 

  200. A.H. Salden, B.M. ter Haar Romeny, and M.A.Viergever, “Linear scale-space theory from physical principles, ” Journal of Mathematical Imaging and Vision, Vol. 9, pp. 103–139, 1998.

    Google Scholar 

  201. A.H. Salden, “Algebraic invariants of linear scale-spaces, ” in Asian Conference on Computer Vision, Lecture Notes in Computer Science, Springer-Verlag: Berlin, 1998, Vol. 1352, pp. 65–72.

    Google Scholar 

  202. A.H. Salden, “Satellite image analysis and processing tools to be used in air-pollution forecast and simulation systems, ” System Analysis Modelling Simulation, 4-th ERCIM Environmental Modelling Group Workshop, Vol. 39, pp. 131–168, 2000.

    Google Scholar 

  203. A.H. Salden, J.Weickert, and B.M. ter Haar Romeny, “Bluman and Kumei's nonlinear scale-space theory, ” Technical Report ERCIM-02/99-R057, February 1999.

  204. A.H. Salden, B.M. ter Haar Romeny, and M.A.Viergever, “Linearised Euclidean shortening flow of curve geometry, ” International Journal of Computer Vision, Vol. 34, pp. 29–67, 1999.

    Google Scholar 

  205. A.H. Salden, “Dynamic scale-space paradigm versus mathematical morphology?, ” in AeroSense'99, SPIE's 13-th Annual Symposium on Aerospace/Defence Sensing, Simulation, and Control, Orlando, Florida, USA, pp. 155–166, 1999.

  206. A.H. Salden, “Modeling and analysis of sustainable systems, ” ERCIM, 1999, in press.

  207. A.H. Salden and S. Iacob, “Dynamic multi-scale image classification, ” in SPIE's International Symposium on Electronic Imaging 2001, Internet Imaging EI24, 2001, in press.

  208. J. Sanders and J. Wang, “Combining maple and form to decide on integrability questions, ” Computer Physics Communications, Vol. 115, pp. 447–459, 1998.

    Google Scholar 

  209. J. Sanders and J. Wang, “On the integrability of homogeneous scalar evolution equations, ” Journal of Differential Equations, Vol. 147, pp. 410–434, 1998.

    Google Scholar 

  210. J.A. Sanders and J. Wang, “Classification of conservation laws for KdV-like equations, ” Math. Comput. Simulation, Vol. 44, pp. 471–481, 1997.

    Google Scholar 

  211. L.A. Santalo, “Integral geometry in general spaces, ” in Proceedings International Congress of Mathematics, Vol. 1, Cambridge, 1950, pp. 483–489.

    Google Scholar 

  212. G. Sapiro and A. Tannenbaum, “Affine invariant scale-space, ” International Journal of Computer Vision, Vol. 11, pp. 25–44, 1993.

    Google Scholar 

  213. G. Sapiro, R. Kimmel, D. Shaked, B.B. Kimia, and A.M. Bruckstein, “Implementing continuous-scale morphology via curve evolution, ” Pattern Recognition, Vol. 26, pp. 1363–1372, 1993.

    Google Scholar 

  214. G. Sapiro and A. Tannenbaum, “Image smoothing based on an affine invariant flow, ” in Conference on Information Sciences and Systems, Johns Hopkins University, 1993, pp. 196–201.

  215. G. Sapiro and A. Tannenbaum, “Formulating invariant heattype curve flows, ” in SPIE Conference on Geometric Methods in Computer Vision II, Vol. 2031, pp. 234–245, 1993.

    Google Scholar 

  216. G. Sapiro and A. Tannenbaum, “On invariant curve evolution and image analysis, ” Indiana Journal of Mathematics, Vol. 42, pp. 985–1009, 1993.

    Google Scholar 

  217. G. Sapiro and A. Tannenbaum, “Area and length preserving geometric invariant scale-spaces, ” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 17, pp. 67–72, 1995.

    Google Scholar 

  218. G. Sapiro and A. Tannenbaum, “On affine plane curve evolution, ” Journal of Functional Analysis, Vol. 119(1), pp. 79–120, 1994.

    Google Scholar 

  219. O. Scherzer and J.Weickert, “Relations between regularization and diffusion filtering, ” Technical Report DIKU-98/23, Dept. of Computer Science, University of Copenhagen, Denmark, 1998.

    Google Scholar 

  220. C. Schmidt and R. Mohr, “Combining grey-value invariants with local constraints for object recognition, ” in Proc. Intern. Conf. on Computer Vision and Pattern Recognition, San Francisco, USA, 1996.

  221. J. Segman and W. Schempp, “Two ways to incorporate scale in the Heisenberg group with an intertwining operator, ” Journal of Mathematical Imaging and Vision, Vol. 3, pp. 79–94, 1993.

    Google Scholar 

  222. J. Segman and Y.Y. Zeevi, “Image analysis by wavelet-type transforms: Group theoretic approach, ” Journal of Mathematical Imaging and Vision, Vol. 3, pp. 51–77, 1993.

    Google Scholar 

  223. J. Serra, Image Analysis and Mathematical Morphology. Academic Press: New York, 1982.

    Google Scholar 

  224. J. Shah, “Segmentation by nonlinear diffusion, ” in Conference on Computer Vision and Pattern Recognition, pp. 202–207, 1991.

  225. J. Shah, “Segmentation by minimising functionals: Smoothing properties, ” SIAM J. Control and Optimisation, Vol. 30, pp. 99–111, 1992.

    Google Scholar 

  226. J. Shah, “A nonlinear model for discontinuous disparity and half-occlusions in stereo, ” in Proc. Computer Vision and Pattern Recognition, pp. 34–40, 1993.

  227. K. Sivakumar and J. Goutsias (Eds.), Mathematical Morphology and Its Applications to Image Processing, Kluwer Academic Publishers: London, 1994.

  228. K. Sivakumar and J. Goutsias, “Morphological size densities: Applications to optimal texture classification and noise filtering, ” in 1997 IEEE/EURASIP Workshop on Nonlinear Signal and Image Processing, Causal Productions, CD-ROM, paper 113, Mackinac Island, Michigan, USA, 1997.

    Google Scholar 

  229. E.H. Spanier, Algebraic Topology, McGraw-Hill: New York, 1966.

    Google Scholar 

  230. J. Sporring, “The entropy of scale-space, ” in Proceedings of 13th International Conference on Pattern Recognition, Vienna, Austria, 1996.

  231. J. Sporring, M. Nielsen, J. Weickert, and O.F. Olsen, “A note on differential corner measures, ” in Proceedings International Conference on Pattern Recognition, Brisbane, Australia, 1996, pp. 652–654.

  232. J. Sporring and J. Weickert, “Information measures in scale-spaces, ” IEEE Trans. Information Theory, Vol. 45, pp. 1051–1058, 1999.

    Google Scholar 

  233. J. Staal, S.N. Kalitzin, B.M. ter Haar Romeny, and M.A. Viergever, “Detection of critical structures in scale-space, ” in Scale-space theories in computer vision, Lecture Notes in Computer Science, Vol. 1682, Springer, Berlin, pp. 105–116, 1999.

    Google Scholar 

  234. S. Tanimoto and A. Klinger (Eds.), Structured Computer Vision, Academic Press: New York, 1980.

    Google Scholar 

  235. S. Tari, J. Shah, and H. Pien, “Extraction of shape skeletons from grey-scale images, ” Computer Vision and Image Understanding, Vol. 66, pp. 133–146, 1997.

    Google Scholar 

  236. S. Tari, “Colouring 3D symmetry set: Perceptual meaning and significance in 3D, ” in AeroSense'99, SPIE's 13-th Annual International Symposium on Aerospace/Defence Sensing, Simulation, and Control, Vol. 3716, pp. 105–111, 1999.

    Google Scholar 

  237. B.M. ter Haar Romeny (Ed.), Geometry-Driven Diffusion in Computer Vision, Kluwer Academic Publishers: Dordrecht, 1994.

    Google Scholar 

  238. T.Y. Thomas, The Differential Invariants of Generalised Spaces, Cambridge University Press: New York, 1934.

    Google Scholar 

  239. D. Thurston, Integral Expressions for the Vassiliev Knot Invariants, Harvard University, U.S.A. Senior Thesis, 1995.

    Google Scholar 

  240. C.-H. Tze, “Manifold-splitting regularization, self-linking, twisting, writhing numbers of space-time ribbins and polyakov's proof of Fermi-Bose transmutations, ” International Journal of Modern Physics A, Vol. 3, pp. 1959–1979, 1988.

    Google Scholar 

  241. R. van den Boomgaard, “Mathematical morphology: extensions towards computer Vision, ” Ph.D. thesis, University of Amsterdam, Amsterdam, The Netherlands, 1992.

    Google Scholar 

  242. R. van den Boomgaard, “The morphological equivalent of the Gauss convolution, ” Nieuw Archief voorWiskunde, Vol. 10, pp. 219–236, 1992.

    Google Scholar 

  243. R. van den Boomgaard and A.W.M. Smeulders, “Morphological multi-scale image analysis, ” in Mathematical Morphology and its Applications to Signal Processing, Barcelona, Spain, May 1993, pp. 180–185.

  244. R. van den Boomgaard and A.W.M. Smeulders, “The morphological structure of images, the differential equations of morphological scale-space, ” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, pp. 1101–1113, 1994.

    Google Scholar 

  245. R. van den Boomgaard and J. Schavemaker, “Image segmentation in morphological scale-space, ” in ISMM'94: Mathematical Morphology and Its Application to Signal Processing 2- Poster Contribution-, pp. 15–16, 1994.

  246. R. van den Boomgaard and L. Dorst, “The morphological equivalent of Gaussian scale-space, ” in Gaussian Scale-Space Theory, Kluwer Academic Publishers: Dordrecht, 1996, pp. 203–220.

    Google Scholar 

  247. V.A. Vassiliev, “Cohomology of knot spaces, ” Advances in Soviet Mathematics, Vol. 1, pp. 23–69, 1990.

    Google Scholar 

  248. V.A.Vassiliev, “Topology of complements to discriminants and loop spaces, ” Advances in Soviet Mathematics,Vol. 1, pp. 9–21, 1990.

    Google Scholar 

  249. L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm based on immersion simulations, ” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 13, pp. 583–598, 1991.

  250. J.P. Wang, Symmetries and Conservation Laws of Evolution Equations, Ph.D. thesis, Thomas Stieltjes Institute for Mathematics, Vrije Universiteit, Amsterdam, The Netherlands, 1998.

    Google Scholar 

  251. J. Weickert, Anisotropic Diffusion in Image Processing, Ph.D. thesis, Dept. of Mathematics, University of Kaiserslautern, Germany, 1996.

    Google Scholar 

  252. J. Weickert, “Foundations and applications of nonlinear anisotropic diffusion filtering, ” in Numerical Analysis, Scientific Computing, Computer Science, Akademie Verlag, Berlin, 1996, pp. 283–286.

    Google Scholar 

  253. J. Weickert, “Nonlinear diffusion scale-spaces: From the continuous to the discrete setting, ” in ICAOS '96: Images,Wavelets and PDEs, Lecture Notes in Control and Information Sciences, Springer-Verlag: London, 1996, Vol. 219, pp. 111–118.

    Google Scholar 

  254. J. Weickert, Anisotropic Diffusion in Image Processing, Teubner-Verlag: Stuttgart, Germany, 1998.

    Google Scholar 

  255. J.Weickert, “On discontinuity-preserving optic flow, ” in Proc. Computer Vision and Mobile Robotics Workshop, Santorini, Greece, 1998, pp. 115–122.

  256. J. Weickert, “Fast segmentation methods based on partial differential equations and the watershed transformation, ” in Mustererkennung 1998, Springer-Verlag, Berlin, Germany, 1998, pp. 93–100.

    Google Scholar 

  257. J. Weickert, S. Ishikawa, and A. Imiya, “On the history of gaussian scale-space axiomatics, ” in Gaussian Scale-Space Theory, Kluwer: Dordrecht, 1996, pp. 45–59.

    Google Scholar 

  258. J. Weickert and S. Ishikawa, “Linear scale-space has first been proposed in Japan, ” Journal of Mathematical Imaging and Vision, Vol. 10, pp. 237–252, 1999.

    Google Scholar 

  259. A. Weil, L'integration dans les groupes topologiques et ses applications, Gauthiers Villars: Paris, 1938.

    Google Scholar 

  260. R.T. Whitaker and S.M. Pizer, “A multi-scale approach to nonuniform diffusion, ” Computer Vision, Graphics, and Image Processing: Image Understanding, Vol. 57, pp. 99–110, 1993.

    Google Scholar 

  261. R.T. Whitaker and G. Gerig, “Vector-valued diffusion, ” in Geometry-Driven Diffusion in Computer Vision, Computational Imaging and Vision, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994, pp. 93–134.

    Google Scholar 

  262. J.H. White, “Self-linking and the Gauss integral in higher dimensions, ” American Journal of Mathematics, Vol. 91, pp. 693–728, 1969.

    Google Scholar 

  263. A.P. Witkin, “Scale-space filtering, ” in Proc. International Joint Conference on Artificial Intelligence, Karlsruhe, Germany, 1983, pp. 1019–1023.

  264. L.B. Wolff, S.A. Shafer, and G.E. Healey (Eds.), Physics-based Vision: Principles and Practice; Radiometry, Jones and Bartlett Publishers: London, 1992.

    Google Scholar 

  265. A. Yezzi, S. Kichenassamy, A. Kumar, P.J. Olver, and A. Tannenbaum, “A geometric snake model for segmentation of medical imagery, ” Medical Imaging, Vol. 16, pp. 199–209, 1997.

    Google Scholar 

  266. A. Yuille, L. Vincent, and D. Geiger, “Statistical morphology and Bayesian reconstruction, ” Journal of Mathematical Imaging and Vision, Special Issue: Image Algebra and Morphological Image Processing, Vol. 1, pp. 223–238, 1992.

  267. A.L. Yuille and T.A. Poggio, “Scaling theorems for zerocrossings, ” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 8, pp. 15–25, 1986.

    Google Scholar 

  268. O.I. Zavialov, Renormalised Quantum Field Theory, Kluwer Academic Publishers: Dordrecht, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfons H. Salden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salden, A.H., Romeny, B.M.T.H. & Viergever, M.A. A Dynamic Scale–Space Paradigm. Journal of Mathematical Imaging and Vision 15, 127–168 (2001). https://doi.org/10.1023/A:1012282305022

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012282305022

Navigation