Abstract
A knowledge-based method for calculating the similarity of functional groups is described and validated. The method is based on experimental information derived from small molecule crystal structures. These data are used in the form of scatterplots that show the likelihood of a non-bonded interaction being formed between functional group A (the `central group') and functional group B (the `contact group' or `probe'). The scatterplots are converted into three-dimensional maps that show the propensity of the probe at different positions around the central group. Here we describe how to calculate the similarity of a pair of central groups based on these maps. The similarity method is validated using bioisosteric functional group pairs identified in the Bioster database and Relibase. The Bioster database is a critical compilation of thousands of bioisosteric molecule pairs, including drugs, enzyme inhibitors and agrochemicals. Relibase is an object-oriented database containing structural data about protein-ligand interactions. The distributions of the similarities of the bioisosteric functional group pairs are compared with similarities for all the possible pairs in IsoStar, and are found to be significantly different. Enrichment factors are also calculated showing the similarity method is statistically significantly better than random in predicting bioisosteric functional group pairs.
Similar content being viewed by others
References
Friedman, H.L., Influence of Isosteric Replacements upon Biological Activity, National Academy of Sciences-National Research Council Publication No. 206, Washington DC, 1951, pp. 295-395.
Thornber, C.W., Quart. Rev. Chem. Soc., 8 (1979) 563.
Gilbert, A.S. and Champness, J.N., In Beddell, C.R. (Ed.), The Design of Drugs to Macromolecular Targets, John Wiley and Sons, Chichester, 1992, pp. 25-47.
Pitchford, N.A. and Taylor, R., In Martin, Y.C. and Willett, P. (Eds.), Designing Bioactive Molecules, American Chemical Society, Washington DC, 1998, pp. 19-46.
Allen, F.H., Davies, J.E., Galloy, J.J., Johnson, O., Kennard, O., Macrae, C.F., Mitchell, E.M., Mitchell, G.F., Smith, J.M. and Watson, G.G., J. Chem. Inf. Comput. Sci., 31 (1991) 187.
Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.
Taylor, R., Kennard, O. and Vershiel, W., J. Am. Chem. Soc., 105 (1983) 5761.
Hunter, C.A., Singh, J. and Thornton, J.M., J. Mol. Biol., 218 (1991) 837.
Klebe, G., J. Mol. Biol., 237 (1994) 212.
Mitchell, J.B.O., Nandi, C.L., McDonald, I.K., Thornton, J.M. and Price, S.L., J. Mol. Biol., 239 (1994) 315.
Flanagan, K., Walshaw, J., Price, S.L. and Goodfellow, J.M., Protein Eng., 8 (1995) 109.
Lommerse, J.P.M., Stone, A.J., Taylor, R., and Allen, F.H., J. Am. Chem. Soc., 118 (1996) 3108.
Bruno, I.J., Cole, J.C., Lommerse, J.P.M., Rowland, R.S., Taylor, R. and Verdonk, M.L., J. Comput. Aided Mol. Des., 11 (1997), 525.
Dean, P.M. and Perkins, T.D., In Martin, Y.C. and Willett, P. (Eds.), Designing Bioactive Molecules, American Chemical Society, Washington DC, 1998, pp. 199-218.
Carbo, R., Leyda, L. and Arnau, M., Int. J. Quant. Chem., 17 (1980) 1185.
Hodgkin, E.E. and Richards, W.G., Int. J. Quant. Chem., 14 (1987) 105.
Reynolds, C.A., Burt, C. and Richards, W.G., Quant. Struct. Act. Relat., 11 (1992) 34.
Klebe, G., In Kubinyi, H. (Ed.), 3D QSAR in Drug Design, ESCOM, Leiden, 1993, pp. 173-225.
Martin, Y.C., Bures, M.G., Danaher, E.A., Delazzer, J., Lico, I. and Pavlik, P.A., J., Comput. Aid Mol. Des., 7 (1993) 83.
Pickett, S.D., Mason, J.S. and McLay, I.M., J. Chem. Inf. Comput. Sci., 36 (1996) 1214.
Van Drie, J.H., J. Comput. Aid Mol. Des. 11 (1997) 39.
Lemmen, C. and Lengauer, T., J. Comput. Aid Mol. Des. 141 (2000) 215.
Verdonk, M.L., Cole, J.C., Watson, P., Gillet, V.J., Willett, P., J. Mol. Biol., accepted.
Good, A.C., Hodgkin, E.E. and Richards, W.G., J. Chem. Inf. Comput. Sci., 32 (1992) 188.
Bioster (version 98.1), Synopsys, 5 North Hill Road, Leeds, LS6 2EN, UK.
Relibase+ (alpha version), CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK.
Verdonk, M.L., Cole, J.C. and Taylor, R., J. Mol. Biol., 289 (1999) 1093.
Boer, D.R., Kroon, J., Cole, J.C., Smith, B., Verdonk, M.L., unpublished work.
Nelder, J.A. and Mead, R., Comput. J., 7 (1965) 308.
Hsiou, Y., Das, K., Ding, J., Clark, J.D., Kleim, J.P., Rosner, M., Winkler, I., Riess, G., Hughes, S.H. and Arnold, E., J. Mol. Biol., 284 (1998) 313.
Ren, J., Esnouf, R.M., Hopkins, A.L., Warren, J., Balzarini, J., Stuart, D.I. and Stammers, D.K., Biochem., 37 (1998) 14394.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Watson, P., Willett, P., Gillet, V.J. et al. Calculating the knowledge-based similarity of functional groups using crystallographic data. J Comput Aided Mol Des 15, 835–857 (2001). https://doi.org/10.1023/A:1013115500749
Issue Date:
DOI: https://doi.org/10.1023/A:1013115500749