Skip to main content
Log in

Calculating the knowledge-based similarity of functional groups using crystallographic data

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A knowledge-based method for calculating the similarity of functional groups is described and validated. The method is based on experimental information derived from small molecule crystal structures. These data are used in the form of scatterplots that show the likelihood of a non-bonded interaction being formed between functional group A (the `central group') and functional group B (the `contact group' or `probe'). The scatterplots are converted into three-dimensional maps that show the propensity of the probe at different positions around the central group. Here we describe how to calculate the similarity of a pair of central groups based on these maps. The similarity method is validated using bioisosteric functional group pairs identified in the Bioster database and Relibase. The Bioster database is a critical compilation of thousands of bioisosteric molecule pairs, including drugs, enzyme inhibitors and agrochemicals. Relibase is an object-oriented database containing structural data about protein-ligand interactions. The distributions of the similarities of the bioisosteric functional group pairs are compared with similarities for all the possible pairs in IsoStar, and are found to be significantly different. Enrichment factors are also calculated showing the similarity method is statistically significantly better than random in predicting bioisosteric functional group pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedman, H.L., Influence of Isosteric Replacements upon Biological Activity, National Academy of Sciences-National Research Council Publication No. 206, Washington DC, 1951, pp. 295-395.

  2. Thornber, C.W., Quart. Rev. Chem. Soc., 8 (1979) 563.

    Google Scholar 

  3. Gilbert, A.S. and Champness, J.N., In Beddell, C.R. (Ed.), The Design of Drugs to Macromolecular Targets, John Wiley and Sons, Chichester, 1992, pp. 25-47.

    Google Scholar 

  4. Pitchford, N.A. and Taylor, R., In Martin, Y.C. and Willett, P. (Eds.), Designing Bioactive Molecules, American Chemical Society, Washington DC, 1998, pp. 19-46.

    Google Scholar 

  5. Allen, F.H., Davies, J.E., Galloy, J.J., Johnson, O., Kennard, O., Macrae, C.F., Mitchell, E.M., Mitchell, G.F., Smith, J.M. and Watson, G.G., J. Chem. Inf. Comput. Sci., 31 (1991) 187.

    Google Scholar 

  6. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  7. Taylor, R., Kennard, O. and Vershiel, W., J. Am. Chem. Soc., 105 (1983) 5761.

    Google Scholar 

  8. Hunter, C.A., Singh, J. and Thornton, J.M., J. Mol. Biol., 218 (1991) 837.

    Google Scholar 

  9. Klebe, G., J. Mol. Biol., 237 (1994) 212.

    Google Scholar 

  10. Mitchell, J.B.O., Nandi, C.L., McDonald, I.K., Thornton, J.M. and Price, S.L., J. Mol. Biol., 239 (1994) 315.

    Google Scholar 

  11. Flanagan, K., Walshaw, J., Price, S.L. and Goodfellow, J.M., Protein Eng., 8 (1995) 109.

    Google Scholar 

  12. Lommerse, J.P.M., Stone, A.J., Taylor, R., and Allen, F.H., J. Am. Chem. Soc., 118 (1996) 3108.

    Google Scholar 

  13. Bruno, I.J., Cole, J.C., Lommerse, J.P.M., Rowland, R.S., Taylor, R. and Verdonk, M.L., J. Comput. Aided Mol. Des., 11 (1997), 525.

    Google Scholar 

  14. Dean, P.M. and Perkins, T.D., In Martin, Y.C. and Willett, P. (Eds.), Designing Bioactive Molecules, American Chemical Society, Washington DC, 1998, pp. 199-218.

    Google Scholar 

  15. Carbo, R., Leyda, L. and Arnau, M., Int. J. Quant. Chem., 17 (1980) 1185.

    Google Scholar 

  16. Hodgkin, E.E. and Richards, W.G., Int. J. Quant. Chem., 14 (1987) 105.

    Google Scholar 

  17. Reynolds, C.A., Burt, C. and Richards, W.G., Quant. Struct. Act. Relat., 11 (1992) 34.

    Google Scholar 

  18. Klebe, G., In Kubinyi, H. (Ed.), 3D QSAR in Drug Design, ESCOM, Leiden, 1993, pp. 173-225.

    Google Scholar 

  19. Martin, Y.C., Bures, M.G., Danaher, E.A., Delazzer, J., Lico, I. and Pavlik, P.A., J., Comput. Aid Mol. Des., 7 (1993) 83.

    Google Scholar 

  20. Pickett, S.D., Mason, J.S. and McLay, I.M., J. Chem. Inf. Comput. Sci., 36 (1996) 1214.

    Google Scholar 

  21. Van Drie, J.H., J. Comput. Aid Mol. Des. 11 (1997) 39.

    Google Scholar 

  22. Lemmen, C. and Lengauer, T., J. Comput. Aid Mol. Des. 141 (2000) 215.

    Google Scholar 

  23. Verdonk, M.L., Cole, J.C., Watson, P., Gillet, V.J., Willett, P., J. Mol. Biol., accepted.

  24. Good, A.C., Hodgkin, E.E. and Richards, W.G., J. Chem. Inf. Comput. Sci., 32 (1992) 188.

    Google Scholar 

  25. Bioster (version 98.1), Synopsys, 5 North Hill Road, Leeds, LS6 2EN, UK.

  26. Relibase+ (alpha version), CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK.

  27. Verdonk, M.L., Cole, J.C. and Taylor, R., J. Mol. Biol., 289 (1999) 1093.

    Google Scholar 

  28. Boer, D.R., Kroon, J., Cole, J.C., Smith, B., Verdonk, M.L., unpublished work.

  29. Nelder, J.A. and Mead, R., Comput. J., 7 (1965) 308.

    Google Scholar 

  30. Hsiou, Y., Das, K., Ding, J., Clark, J.D., Kleim, J.P., Rosner, M., Winkler, I., Riess, G., Hughes, S.H. and Arnold, E., J. Mol. Biol., 284 (1998) 313.

    Google Scholar 

  31. Ren, J., Esnouf, R.M., Hopkins, A.L., Warren, J., Balzarini, J., Stuart, D.I. and Stammers, D.K., Biochem., 37 (1998) 14394.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, P., Willett, P., Gillet, V.J. et al. Calculating the knowledge-based similarity of functional groups using crystallographic data. J Comput Aided Mol Des 15, 835–857 (2001). https://doi.org/10.1023/A:1013115500749

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013115500749

Navigation