
Machine Learning, 47, 201–233, 2002
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

On the Learnability and Design of Output
Codes for Multiclass Problems

KOBY CRAMMER∗ kobics@cs.huji.ac.il
YORAM SINGER† singer@cs.huji.ac.il
School of Computer Science & Engineering, The Hebrew University, Jerusalem 91904, Israel

Editor: Jyrki Kivinen

Abstract. Output coding is a general framework for solving multiclass categorization problems. Previous re-
search on output codes has focused on building multiclass machines given predefined output codes. In this paper
we discuss for the first time the problem of designing output codes for multiclass problems. For the design problem
of discrete codes, which have been used extensively in previous works, we present mostly negative results. We
then introduce the notion of continuous codes and cast the design problem of continuous codes as a constrained
optimization problem. We describe three optimization problems corresponding to three different norms of the code
matrix. Interestingly, for the l2 norm our formalism results in a quadratic program whose dual does not depend on
the length of the code. A special case of our formalism provides a multiclass scheme for building support vector
machines which can be solved efficiently. We give a time and space efficient algorithm for solving the quadratic
program. We describe preliminary experiments with synthetic data show that our algorithm is often two orders of
magnitude faster than standard quadratic programming packages. We conclude with the generalization properties
of the algorithm.

Keywords: multiclass categorization, output coding, SVM

1. Introduction

Many applied machine learning problems require assigning labels to instances where the
labels are drawn from a finite set of labels. This problem is often referred to as multiclass
categorization or classification. Examples for machine learning applications that include a
multiclass categorization component include optical character recognition, text classifica-
tion, phoneme classification for speech synthesis, medical analysis, and more. Some of the
well known binary classification learning algorithms can be extended to handle multiclass
problems (see for instance Breiman et al., 1984; Quinlan, 1993; Rumelhart, Hinton, &
Williams, 1986). A general approach is to reduce a multiclass problem to a set of multiple
binary classification problems.

Dietterich and Bakiri (1995) described a general approach based on error-correcting
codes which they termed error-correcting output coding (ECOC), or in short output coding.
Output coding for multiclass problems is composed of two stages. In the training stage
we need to construct multiple (supposedly) independent binary classifiers each of which is

∗http://cs.huji.ac.il/∼kobics
†http://cs.huji.ac.il/∼singer

202 K. CRAMMER AND Y. SINGER

based on a different partition of the set of the labels into two disjoint sets. In the second
stage, the classification part, the predictions of the binary classifiers are combined to extend
a prediction on the original label of a test instance. Experimental work has shown that output
coding can often greatly improve over standard reductions to binary problems (Dietterich
& Bakiri, 1995; Dietterich & Kong, 1995; Kong & Dietterich, 1995; Aha & Bankert, 1997;
Schapire, 1997; Dietterich, 1999; Berger, 1999; Allwein, Schapire, & Singer, 2000). The
performance of output coding was also analyzed in statistics and learning theoretic contexts
(Hastie & Tibshirani, 1998; James & Hastie, 1998; Schapire & Singer, 1999; Allwein,
Schapire, & Singer, 2000).

Most of the previous work on output coding has concentrated on the problem of solving
multiclass problems using predefined output codes, independently of the specific appli-
cation and the class of hypotheses used to construct the binary classifiers. Therefore, by
predefining the output code we ignore the complexity of the induced binary problems. The
output codes used in experiments were typically confined to a specific family of codes.
Several families of codes have been suggested and tested so far, such as, comparing each
class against the rest, comparing all pairs of classes (Hastie & Tibshirani, 1998; Allwein,
Schapire, & Singer, 2000), random codes (Dietterich & Bakiri, 1995; Schapire, 1997;
Allwein, Schapire, & Singer, 2000), exhaustive codes (Dietterich & Bakiri, 1995; Allwein,
Schapire, & Singer, 2000), and linear error correcting codes (Dietterich & Bakiri, 1995). A
few heuristics attempting to modify the code so as to improve the multiclass prediction ac-
curacy were suggested (e.g., Aha & Bankert, 1997). However, they did not yield significant
improvements and, furthermore, they lack any formal justification.

In this paper we concentrate on the problem of designing a good code for a given multiclass
problem. In Section 3 we study the problem of finding the first column of a discrete code
matrix. Given a binary classifier, we show that finding a good first column can be done in
polynomial time. In contrast, when we restrict the hypotheses class from which we choose
the binary classifiers, the problem of finding a good first column becomes difficult. This
result underscores the difficulty of the code design problem. Furthermore, in Section 4
we discuss the general design problem and show that given a set of binary classifiers the
problem of finding a good code matrix is NP-complete.

Motivated by the intractability results we introduce in Section 5 the notion of continu-
ous codes and cast the design problem of continuous codes as a constrained optimization
problem. As in discrete codes, each column of the code matrix divides the set of labels
into two subsets which are labeled positive (+) and negative (−). The sign of each entry in
the code matrix determines the subset association (+ or −) and the magnitude corresponds
to the confidence in this association. Given this formalism, we seek an output code with
small empirical loss whose matrix norm is small. We describe three optimization problems
corresponding to three different norms of the code matrix: l1, l2 and l∞. For l1 and l∞ we
show that the code design problem can be solved by linear programming (LP). Interest-
ingly, for the l2 norm our formalism results in a quadratic program (QP) whose dual does
not depend on the length of the code. Similar to support vector machines, the dual program
can be expressed in terms of inner-products between input instances, hence we can employ
kernel-based binary classifiers. Our framework yields, as a special case, a direct and efficient
method for constructing multiclass support vector machines.

LEARNABILITY AND DESIGN OF OUTPUT CODES 203

The number of variables in the dual quadratic problem is the product of the number of
samples by the number of classes. This value becomes very large even for small datasets. For
instance, an English letter recognition problem with 1,000 training examples would require
26,000 variables. In this case, the standard matrix representation of dual quadratic problem
would require more than 5 Giga bytes of memory. We therefore describe in Section 6.1 a
memory efficient algorithm for solving the quadratic program for code design. Our algorithm
is reminiscent of Platt’s sequential minimal optimization (SMO) (Platt, 1998). However,
unlike SMO, our algorithm optimizes on each round a reduced subset of the variables
that corresponds to a single example. Informally, our algorithm reduces the optimization
problem to a sequence of small problems, where the size of each reduced problem is equal
to the number of classes of the original multiclass problem. Each reduced problem can again
be solved using a standard QP technique. However, standard approaches would still require
large amount of memory when the number of classes is large and a straightforward solution
is also time consuming. We therefore further develop the algorithm and provide an analytic
solution for the reduced problems and an efficient algorithm for calculating the solution.
The run time of the algorithm is polynomial and the memory requirements are linear in the
number of classes. We conclude with simulations results showing that our algorithm is at
least two orders of magnitude faster than a standard QP technique, even for small number of
classes. We conclude in Section 7 with a short description of the generalization properties
of the algorithm.

2. Discrete codes

Let S = {(x1, y1), . . . , (xm, ym)} be a set of m training examples where each instance xi

belongs to a domain X . We assume without loss of generality that each label yi is an integer
from the set Y = {1, . . . , k}. A multiclass classifier is a function H : X → Y that maps an
instance x into an element y of Y . In this work we focus on a framework that uses output
codes to build multiclass classifiers from binary classifiers. A discrete output code M is a
matrix of size k × l over {−1, +1} where each row of M correspond to a class y ∈ Y . Each
column of M defines a partition of Y into two disjoint sets. Binary learning algorithms
are used to construct classifiers, one for each column t of M . That is, the set of examples
induced by column t of M is (x1, My1,t), . . . , (xm, Mym ,t). This set is fed as training data
to a learning algorithm that finds a hypothesis ht : X → {−1, +1}. This reduction yields l
different binary classifiers h1, . . . , hl . We denote the vector of predictions of these classifiers
on an instance x as h̄(x) = (h1(x), . . . , hl(x)). We denote the r th row of M by M̄r .

Given an example x we predict the label y for which the row M̄y is the “closest” to h̄(x).
We will use a general notion for closeness and define it through an inner-product function
K : R

l ×R
l → R. The higher the value of K (h̄(x), M̄r) is the more confident we are that r

is the correct label of x according to the classifiers h̄. An example for a closeness function
is K (ū, v̄) = ū · v̄. It is easy to verify that this choice of K is equivalent to picking the row
of M which attains the minimal Hamming distance to h̄(x).

Given a classifier H(x) and an example (x, y), we say that H(x)misclassified the example
if H(x) �= y. Let [[π]] be 1 if the predicate π holds and 0 otherwise. Our goal is therefore
to find a classifier H(x) such that 1

m

∑m
i=1[[H(xi) �= yi]] is small. We would like to note

204 K. CRAMMER AND Y. SINGER

in passing that we mainly focus on the empirical loss minimization problem. We briefly
describe bounds on the generalization error in Section 7.

When l is small there might be more then one row of M which attains the maximal value
according to the function K . To accommodate such cases we will relax our definition and
define a classifier H(X) based on a code M to be the mapping H(x) :X → 2Y given by
H(x) = {y | K (h̄(x), M̄y) = maxr K (h̄(x), M̄r)}. In this case we will pick one of the
labels in H(x) uniformly at random, and use the expected error of H(x),

εS(M, h̄)
def= 1

m

m∑
i=1

(
1 − [[yi ∈ H(xi)]]

|H(xi)|
)

= 1 − 1

m

m∑
i=1

[[yi ∈ H(xi)]]

|H(xi)| (1)

In the context of output codes, a multiclass mapping H(x) is thus determined by two
parameters: the coding matrix M and the set of binary classifiers h̄(x). Assume that the
binary classifiers h1(x) . . . hl(x) are chosen from some hypothesis class H. The following
natural learning problems arise,

(a) Given a matrix M , find a set h̄ which suffers small empirical loss.
(b) Given a set of binary classifiers h̄, find a matrix M which has small empirical loss.
(c) Find both a matrix M and a set h̄ which have small empirical loss.

Previous work has focused mostly on the first problem. In this paper we mainly concen-
trate on the code design problem (problem b), that is, finding a good matrix M . A summary
of the notation is given in Appendix B.

3. Finding the first column of an output code

Assume we are given a single binary classifier h1(x) and we want to find the first (or the
single) column of the matrix M which minimizes the empirical loss εS(M, h̄). For brevity,
let us denote by ū = (u1 . . . uk)

T the first column of M . We now describe an efficient
algorithm that finds ū given h1(x). The algorithm’s running time is polynomial in the size
of the label set k = |Y| and the sample size m. First, note that in this case

yi ∈ H(xi) ⇔ h1(xi) = uyi . (2)

Second, note that the sample can be divided into 2k equivalence classes according to
their labels and the classification of h1(x). For r = 1, . . . , k and b ∈ {−1, +1}, define ab

r =
1
m |{i : yi = r, h1(xi) = b}| to be the fraction of the examples with label r and classification b

(according to h1(x)). For b ∈ {−1, +1}, denote by ab = ∑k
r=1 ab

r , and let wb = |{r : ur = b}|
be the number of elements in ū which are equal to b. (For brevity, we will often use + and
− to denote the value of b.) Let

ξS(M, h̄)
def= 1

m

m∑
i=1

[[yi ∈ H(xi)]]

|H(xi)| = 1 − εS(M, h̄). (3)

LEARNABILITY AND DESIGN OF OUTPUT CODES 205

We can assume without loss of generality that not all the elements in ū are the same
(otherwise, ξS(M, h̄) = 1

k , which is equivalent to random guessing). Hence, the size of
H(x) is:

|H(x)| =
{

w+ h1(x) = +1

w− h1(x) = −1.
(4)

Using Eqs. (2) and (4), we rewrite Eq. (3),

ξS(M, h̄) = 1

m

∑
i :yi ∈H(xi)

1

|H(xi)|

= 1

m

∑
i :h(xi)=uyi

1

|H(xi)|

= 1

m

k∑
r=1

∑
i :yi =r

h(xi)=ur

1

w+ ur = +1

1

w− ur = −1

=
k∑

r=1

a+
r

w+ ur = +1

a−
r

w− ur = −1.

(5)

Using Eq. (5) we now can expand ξS(M, h̄),

ξS(M, h̄) =
k∑

r=1

[
1

2
(1 + ur)

a+
r

w+ + 1

2
(1 − ur)

a−
r

w−

]

= 1

2

k∑
r=1

[
ur

(
a+

r

w+ − a−
r

w−

)]
+ 1

2

k∑
r=1

(
a+

r

w+ + a−
r

w−

)

= 1

2

k∑
r=1

[
ur

(
a+

r

w+ − a−
r

w−

)]
+ 1

2

(
a+

w+ + a−

w−

)
. (6)

For a particular choice of w+ (and w− = k −w+) ξS is maximized (and εS is minimized)
by setting ur = +1 at the w+ indices which attain the highest values for (

a+
r

w+ − a−
r

w−), and
set the rest w− of the indices to −1. This can be done efficiently in k log k time using
sorting. Therefore, the best choice of ū is found by enumerating all the possible values
for w+ ∈ {1, . . . , k − 1} and choosing the value of w+, w− which achieves the maximal
value for Eq. (6). Since it takes m operations to calculate a+

r and a−
r , the total number of

operations needed to find the optimal choice for the first column is O(m + k2 log k). We
have proven the following theorem.

Theorem 1. Let S = {(x1, y1), . . . , (xm, ym)} be a set of m training examples, where
each label is an integer from the set {1, . . . , k}. Let H be a binary hypothesis class. Given

206 K. CRAMMER AND Y. SINGER

an hypothesis h1(x) ∈ H, the first column of an output code which minimizes the empirical
loss defined by Eq. (1) can be found in polynomial time.

To conclude this section we describe a reduction from SAT. This reduction demonstrates
the difficulty in using a limited learning algorithm for a restricted class of hypotheses from
which h1 can be chosen. Specifically, we show that if one can solve the problem of finding
simultaneously a binary classifier from a restricted class and a single column of a discrete
code which minimizes the empirical error of Eq. (1), then the satisfiability problem can
also be solved. Let �(x1 . . . xn) be a boolean formula over the variables xi ∈ {−1, +1}
where we interpret x = −1 as False and x = +1 as True. We now give the reduction to
the induced learning problem. Define X = {xi , x̄i }n

i=1 ∪ {⊥} to be the instance space. Let
S = {(xi , i)}n

i=1 ∪ {(x̄i , i +n)}n
i=1 ∪ {(⊥, 2n+1)} be a sample of size m = 2n+1, where the

labels are taken fromY = {1, . . . , 2n+1}. Define the learning algorithm L� as follows. The
algorithm’s input is a binary labeled sample of the form {(xi , yi), (x̄i , yi+n), (⊥, y2n+1)}n

i=1.
If �(x1, . . . , xn) = True and for all i yi ⊕ yi+n = True, then the algorithm returns an
hypothesis which is consistent with the sample (the sample itself). Otherwise, the algorithm
returns the constant hypothesis, h(x) ≡ 1 or h1(x) ≡ 0, which agrees with the majority
of the sample by choosing h1(x) ≡ arg maxb∈{−1,+1} |{i : yi = b}|. Note that the learning
algorithm is non-trivial in the sense that the hypothesis it returns has an empirical loss of
less than 1/2 on the binary labeled sample.

We now show that a multiclass learning algorithm that minimizes the empirical loss εS

over both the first column ū and the hypothesis h1(x) which was returned by the algorithm
L� , can be used to check whether the formula � is satisfiable. We need to consider two
cases. When �(x1, . . . , xn) = True and for all i yi ⊕ yi+n = True, then using the
definition from Eq. (3) we get ξS = 1

m (n 1
n + (n + 1) 1

n+1) = 2
m . If the above conditions do

not hold (h1(x) is constant), let v ≥ n + 1 be the number of examples which the hypothesis
h1(x) classifies correctly. Then, using Eq. (3) again we obtain ξS = 1

m (v 1
v
) = 1

m . Thus, the
minimum of εS is achieved if and only if the formula � is satisfiable. Therefore, a learning
algorithm for h1(x) and ū can also be used as an oracle for finding whether a boolean
formula � is satisfiable.

While the setting discussed in this section is somewhat superficial, these results under-
score the difficulty of the problem. We next show that the problem of finding a good output
code given a relatively large set of classifiers h̄(x) is intractable. We would like to note
in passing that an efficient algorithm for finding a single column might be useful in other
settings. For instance in building trees or directed acyclic graphs for multiclass problems
(cf. Platt, Cristianini, & Shawe-Taylor, 2000). We leave this for future research.

4. Finding a general discrete output code

In this section we prove that given a set of l binary classifiers h̄(x), finding a code
matrix which minimizes the empirical loss εS(M, h̄) is NP-complete. Given a sample
S = {(x1, y1), . . . , (xm, ym)} and a set of classifiers h̄, let us denote by S̃ the evaluation
of h̄(·) on the sample S, that is S̃ = {(h̄1, y1), . . . , (h̄m, ym)}, where h̄i

def= h̄(xi). We now
show that even when k = 2 and K (ū, v̄) = ū · v̄ the problem is NP-complete. (Clearly, the

LEARNABILITY AND DESIGN OF OUTPUT CODES 207

problem remains NPC for k > 2). Following the notation of previous sections, the output
code matrix is composed of two rows M̄1 and M̄2 and the predicted class for instance xi

is H(xi) = arg maxr=1,2{M̄r · h̄i }. For the simplicity of the presentation of the proof, we
assume that both the code M and the hypotheses’ values h̄i are over the set {0, 1} (instead
of {−1, +1}). This assumption does not change the problem as it possible to show that the
same proof technique can be used with hypotheses whose outputs are in {±1}.

Theorem 2. The following decision problem is NP-complete.
Input: A natural number q, a labeled sample S̃ = {(h̄1, y1), . . . , (h̄m, ym)}, where yi ∈
{1, 2}, and h̄i ∈ {0, 1}l .
Question: Does there exist a matrix M ∈ {0, 1}2×l such that the classifier H(x) based
on an output code M makes at most q mistakes on S̃.

Proof: Our proof is based on a reduction technique introduced by Höffgen and Simon
(1995). Since we can check in polynomial time whether the number of classification errors
for a given a code matrix M exceeds the bound q, the problem is clearly in NP.

We show a reduction from Vertex Cover in order to prove that the problem is NP-hard.
Given an undirected graph G = (V, E) with |V | = n nodes, we code the structure of the
graph as follows. The sample S̃ will be composed of two subsets, S̃E and S̃V of size 2|E | and
|V | respectively. We set l = 2|V | + 1. Each edge {vi , v j } ∈ E is encoded by two examples
(h̄, y) in S̃E . We set the first vector to hi = 1, h j = 1, hl = 1 and 0 elsewhere. We set
the second vector to hi+n = 1, h j+n = 1, hl = 1 and 0 elsewhere. We set the label y of
each example in S̃E to 1. Each example (h̄, y) in S̃V encodes a node vi ∈ V where hi = 1,
hi+n = 1, hl = 1 and 0 elsewhere. We set the label y of each example in S̃V to 2 (second
class). We now show that there exists a vertex cover U ⊆ V with at most q nodes if and only
if there exists a coding matrix M ∈ {0, 1}2×l that induces at most q classification errors on
the sample S̃.

(⇒): Let U ⊆ V be a vertex cover such that |U | ≤ q. We show that there exists a code
which has at most q mistakes on S̃. Let u ∈ {0, 1}|V | be the characteristic function of U , that
is, ui = 1 if vi ∈ U and ui = 0 otherwise. Define the output code matrix to be M̄1 = (u, u, 1)

and M̄2 = (¬u, ¬u, 0). Here, ¬u denotes the component-wise logical not operator.
Since U is a cover, for each h̄ ∈ S̃E we get

M̄1 · h̄ ≥ 2 and M̄2 · h̄ ≤ 1 ⇒ M̄2 · h̄ < M̄1 · h̄ .

Therefore, for all the examples in S̃E the predicted label equals the true label and we suffer
no errors on these examples. For each example h̄ ∈ S̃V that corresponds to a node v ∈ U
we have

M̄1 · h̄ = 3 > 0 = M̄2 · h̄ .

Therefore, these examples are misclassified (Recall that the label of each example
in S̃V is 2). Analogously, for each example in S̃V which corresponds to v �∈ U we

208 K. CRAMMER AND Y. SINGER

get

M̄1 · h̄ = 1 < 2 = M̄2 · h̄ ,

and these examples are correctly classified. We thus have shown that the total number of
mistakes according to M is |U | ≤ q.

(⇐): Let M be a code which achieves at most q mistakes on S̃. We construct a subset
U ⊆ V as follows. We scan S̃ and add to U all vertices vi corresponding to misclassified
examples from S̃V . Similarly, for each misclassified example from S̃E corresponding to an
edge {vi , v j }, we pick either vi or v j at random and add it to U . Since we have at most q
misclassified examples in S̃ the size of U is at most q. We claim that the set U is a vertex
cover of the graph G. Assume by contradiction that there is an edge {vi , v j } for which neither
vi nor v j belong to the set U . Therefore, by construction, the examples corresponding to
the vertices vi and v j are classified correctly and we get,

M1,i + M1,i+n + M1,l < M2,i + M2,i+n + M2,l

M1, j + M1, j+n + M1,l < M2, j + M2, j+n + M2,l

Summing the above equations yields that,

M1,i + M1, j + M1,i+n + M1, j+n + 2M1,l

< M2,i + M2, j + M2,i+n + M2, j+n + 2M2,l . (7)

In addition, the two examples corresponding to the edge {vi , v j } are classified correctly,
implying that

M1,i + M1, j + M1,l > M2,i + M2, j + M2,l

M1,i+n + M1, j+n + M1,l > M2,i+n + M2, j+n + M2,l

which again by summing the above equations yields,

M1,i + M1, j + M1,i+n + M1, j+n + 2M1,l

> M2,i + M2, j + M2,i+n + M2, j+n + 2M2,l . (8)

Comparing Eqs. (7) and (8) we get a contradiction. ✷

5. Continuous codes

The intractability results of previous sections motivate a relaxation of output codes. In this
section we describe a natural relaxation where both the classifiers’ output and the code
matrix are over the reals.

As before, the classifier H(x) is constructed from a code matrix M and a set of binary
classifiers h̄(x). The matrix M is of size k × l over R where each row of M corresponds to

LEARNABILITY AND DESIGN OF OUTPUT CODES 209

a class y ∈ Y . Analogously, each binary classifier ht (x) ∈ H is a mapping ht (x) :X → R.
A column t of M defines a partition of Y into two disjoint sets. The sign of each element
of the t th column is interpreted as the set (+1 or −1) to which the class r belongs and the
magnitude |Mr,t | is interpreted as the confidence in the associated partition. Similarly, we
interpret the sign of ht (x) as the prediction of the set (+1 or −1) to which the label of the
instance x belongs and the magnitude |ht (x)| as the confidence of this prediction. Given
an instance x , the classifier H(x) predicts the label y which maximizes the confidence
function K (h̄(x), M̄r), H(x) = arg maxr∈Y{K (h̄(x), M̄r)}. Since the code is over the reals,
we can assume here without loss of generality that exactly one class attains the maximum
value according to the function K . We will concentrate on the problem of finding a good
continuous code given a set of binary classifiers h̄.

The approach we will take is to cast the code design problem as constrained optimization
problem. Borrowing the idea of soft margin (Cortes & Vapnik, 1995) we replace the discrete
0–1 multiclass loss with the linear bound

max
r

{
K (h̄(xi), M̄r) + 1 − δyi ,r

} − K
(
h̄(xi), M̄yi

)
. (9)

where δi, j equals 1 if i = j and 0 otherwise. This formulation is also motivated by the
generalization analysis of Allewein, Schapire, and Singer (2000). The analysis they give is
based on the margin of examples where the margin is closely related to the definition of the
loss as given by Eq. (9).

Put another way, the correct label should have a confidence value which is larger by at
least one than any of the confidences for the rest of the labels. Otherwise, we suffer loss
which is linearly proportional to the difference between the confidence of the correct label
and the maximum among the confidences of the other labels. The bound on the empirical
loss is then,

εS(M, h̄) = 1

m

m∑
i=1

[[H(xi) �= yi]]

≤ 1

m

m∑
i=1

[
max

r

{
K (h̄(xi), M̄r) + 1 − δyi ,r

} − K
(
h̄(xi), M̄yi

)]
.

We say that a sample S is classified correctly using a set of binary classifiers h̄ if there exists
a matrix M such that the above loss is equal to zero,

∀i max
r

{
K (h̄(xi), M̄r) + 1 − δyi ,r

} − K
(
h̄(xi), M̄yi

) = 0. (10)

Denote by

bi,r = 1 − δyi ,r . (11)

Thus, a matrix M that satisfies Eq. (10) would also satisfy the following constraints,

∀i, r K
(
h̄(xi), M̄yi

) − K (h̄(xi), M̄r) ≥ bi,r . (12)

210 K. CRAMMER AND Y. SINGER

Motivated by Vapnik (1998), Allwein, Schapire, and Singer (2000) and the results of
Section 7 we seek a matrix M with a small norm which satisfies Eq. (12). Through-
out the paper we define the norm of a matrix M to be the norm of the concatenation
of the rows of M, ‖(M̄1, . . . , M̄k)‖. Thus, when the entire sample S can be labeled cor-
rectly, the problem of finding a good matrix M can be stated as the following optimization
problem,

min
M

‖M‖p

subject to: ∀i, r K
(
h̄(xi), M̄yi

) − K (h̄(xi), M̄r) ≥ bi,r (13)

Here p is an integer. Note that m of the constraints for r = yi are automatically satisfied.
This is changed in the following derivation for the non-separable case. In the general case a
matrix M which classifies all the examples correctly might not exist. We therefore introduce
slack variables ξi ≥ 0 and modify Eq. (10) to be,

∀i max
r

{
K (h̄(xi), M̄r) + 1 − δyi ,r

} − K
(
h̄(xi), M̄yi

) = ξi . (14)

The corresponding optimization problem is,

min
M,ξ

β‖M‖p +
m∑

i=1

ξi

subject to: ∀i, r K
(
h̄(xi), M̄yi

) − K (h̄(xi), M̄r) ≥ bi,r − ξi (15)

for some constant β ≥ 0. This is an optimization problem with “soft” constraints. Analo-
gously, we can define an optimization problem with “hard” constraints,

min
M,ξ

m∑
i=1

ξi

subject to: ∀i, r K
(
h̄(xi), M̄yi

) − K (h̄(xi), M̄r) ≥ bi,r − ξi

‖M‖p ≤ A, for some A > 0

The relation between the “hard” and “soft” constraints and their formal properties is be-
yond the scope of this paper. For further discussion on the relation between the problems
see Vapnik (1998).

5.1. Design of continuous codes using linear programming

We now further develop Eq. (15) for the cases p = 1, 2, ∞. We deal first with the cases
p = 1 and p = ∞ which result in linear programs. For the simplicity of presentation we
will assume that K (ū, v̄) = ū · v̄ .

For the case p = 1 the objective function of Eq. (15) becomes β
∑

i,r |Mi,r | +
∑

i ξi . We
introduce a set of auxiliary variables αi,r = |Mi,r | to get a standard linear programming

LEARNABILITY AND DESIGN OF OUTPUT CODES 211

setting,

min
M,ξ,α

β
∑
r,t

αr,t +
m∑

i=1

ξi

subject to: ∀i, r ξi + h̄(xi) · M̄yi − h̄(xi) · M̄r ≥ bi,r

∀r, t αr,t ≥ ±Mr,t

To obtain its dual program (see also Appendix A) we define one variable for each constraint
of the primal problem. We use ηi,r for the first set of constraints, and γ ±

t,r for the second set.
The dual program is,

max
η,γ ±

∑
i,r

ηi,r bi,r

subject to: ∀i, r, t ηi,r , γ
+
t,r , γ

−
t,r ≥ 0

∀i
∑

r

ηi,r = 1

∀r, t γ +
t,r + γ −

t,r = β

∀r, t
∑

i

ht (xi)
[
δyi ,r − ηi,r

] = −γ +
t,r + γ −

t,r

The case of p = ∞ is similar. The objective function of Eq. (15) becomes β maxi,r

|Mi,r | +
∑

i ξi . We introduce a single new variable α = maxi,r |Mi,r | to obtain the primal
problem,

min
M,ξ,α

βα +
m∑

i=1

ξi

subject to: ∀i, r ξi + h̄(xi) · M̄yi − h̄(xi) · M̄r ≥ bi,r

∀r, t α ≥ ±Mr,t

Following the technique for p = 1, we get that the dual program is,

max
η,γ ±

∑
i,r

ηi,r bi,r

subject to: ∀i, r, t ηi,r , γ
+
t,r , γ

−
t,r ≥ 0

∀i
∑

r

ηi,r = 1∑
t,r

(γ +
t,r + γ −

t,r) = β

∀r, t
∑

i

ht (xi)
[
δyi ,r − ηi,r

] = −γ +
t,r + γ −

t,r

Both programs (p = 1 and 0 = ∞) can be now solved using standard linear program
packages.

212 K. CRAMMER AND Y. SINGER

5.2. Design of continuous codes using quadric programming

We now discuss in detail Eq. (15) for the case p = 2. For convenience we use the square of
the norm of the matrix (instead the norm itself). Therefore, the primal program becomes,

min
M,ξ

1

2
β‖M‖2

2 +
m∑

i=1

ξi

subject to: ∀i, r ξi + h̄(xi) · M̄yi − h̄(xi) · M̄r ≥ bi,r (16)

We solve the optimization problem by finding a saddle point of the Lagrangian:

L(M, ξ, η) = 1

2
β

∑
r

‖M̄r‖2
2 +

m∑
i=1

ξi

+
∑
i,r

ηi,r
[
h̄(xi) · M̄r − h̄(xi) · M̄yi − ξi + bi,r

]
subject to: ∀i, r ηi,r ≥ 0 (17)

The saddle point we are seeking is a minimum for the primal variables (M, ξ), and the
maximum for the dual ones (η). To find the minimum over the primal variables we require,

∂

∂ξi
L = 1 −

∑
r

ηi,r = 0 ⇒
∑

r

ηi,r = 1 (18)

Similarly, for M̄r we require:

∂

∂ M̄r
L =

∑
i

ηi,r h̄(xi) −
∑

i,yi =r

h̄(xi)

(∑
q

ηi,q

)
︸ ︷︷ ︸

=1

+β M̄r = 0

⇒ M̄r = β−1

[∑
i

h̄(xi)
(
δyi ,r − ηi,r

)]
(19)

Equation (19) implies that when the optimum of the objective function is achieved, each
row of the matrix M is a linear combination of h̄(xi). We say that an example i is a support
pattern for class r if the coefficient (δyi ,r − ηi,r) of h̄(xi) in Eq. (19) is not zero. There are
two settings for which an example i can be a support pattern for class r . The first case is
when the label yi of an example is equal to r , then the i th example is a support pattern if
ηi,r < 1. The second case is when the label yi of the example is different from r , then the
i th pattern is a support pattern if ηi,r > 0.

Loosely speaking, since for all i, r , ηi,r ≥ 0 and
∑

r ηi,r = 1, the variable ηi,r can be
viewed as a distribution over the labels for each example. An example i affects the solution
for M (Eq. (19)) if and only if η̄i in not a point distribution concentrating on the correct
label yi . Thus, only the questionable patterns contribute to the learning process.

LEARNABILITY AND DESIGN OF OUTPUT CODES 213

We develop the Lagrangian using only the dual variables. Substituting Eq. (18) to Eq. (16)
we obtain,

Q(η) =
m∑

i=1

ξi +
∑
i,r

ηi,r h̄(xi) · M̄r −
∑
i,r

ηi,r h̄(xi) · M̄yi −
∑

i

ξi

∑
r

ηi,r︸ ︷︷ ︸
=1

+
∑
i,r

ηi,r bi,r + 1

2
β

∑
r

‖M̄r‖2
2

=

def=S1︷ ︸︸ ︷∑
i,r

ηi,r h̄(xi) · M̄r −

def=S2︷ ︸︸ ︷∑
i,r

ηi,r h̄(xi) · M̄yi +

def=S3︷ ︸︸ ︷
1

2
β

∑
r

‖M̄r‖2
2 +

∑
i,r

ηi,r bi,r (20)

We substitute M̄r using Eq. (19) and get,

S1 =
∑
i,r

ηi,r h̄(xi) · M̄r

=
∑
i,r

ηi,r h̄(xi) · β−1
∑

j

h̄(x j)
(
δy j ,r − η j,r

)
= β−1

∑
i, j

h̄(xi) · h̄(x j)
∑

r

ηi,r
(
δy j ,r − η j,r

)
(21)

S2 =
∑
i,r

ηi,r h̄(xi) · M̄yi

=
∑
i,r

ηi,r h̄(xi) · β−1
∑

j

h̄(x j)
(
δy j ,yi − η j,yi

)
= β−1

∑
i, j

h̄(xi) · h̄(x j)
∑

r

ηi,r
(
δy j ,yi − η j,yi

)
= β−1

∑
i, j

h̄(xi) · h̄(x j)
(
δy j ,yi − η j,yi

) ∑
r

ηi,r︸ ︷︷ ︸
=1

= β−1
∑
i, j

h̄(xi) · h̄(x j)
(
δy j ,yi − η j,yi

)
= β−1

∑
i, j

h̄(xi) · h̄(x j)
∑

r

δyi ,r
(
δy j ,r − η j,r

)
(22)

S3 = 1

2
β

∑
r

M̄r · M̄r

= 1

2
β

∑
r

[
β−1

∑
i

h̄(xi)
(
δyi ,r − ηi,r

)][
β−1

∑
j

h̄(x j)
(
δy j ,r − η j,r

)]

= 1

2
β−1

∑
i, j

h̄(xi) · h̄(x j)
∑

r

(
δyi ,r − ηi,r

)(
δy j ,r − η j,r

)
. (23)

214 K. CRAMMER AND Y. SINGER

Taking the difference S1 − S2 while using Eqs. (21) and (22) we get:

S1 − S2 = β−1
∑
i, j

h̄(xi) · h̄(x j)
∑

r

ηi,r
(
δy j ,r − η j,r

)
−β−1

∑
i, j

h̄(xi) · h̄(x j)
∑

r

δyi ,r
(
δy j ,r − η j,r

)
= −β−1

∑
i, j

h̄(xi) · h̄(x j)
∑

r

(
δyi ,r − ηi,r

)(
δy j ,r − η j,r

)
(24)

Finally, plugging the values for S1, S2 and S3 from Eqs. (23) and (24) in Eq. (20) we get,

Q(η) = −β−1
∑
i, j

h̄(xi) · h̄(x j)
∑

r

(
δyi ,r − ηi,r

)(
δy j ,r − η j,r

)
+ 1

2
β−1

∑
i, j

h̄(xi) · h̄(x j)
∑

r

(
δyi ,r − ηi,r

)(
δy j ,r − η j,r

) +
∑
i,r

ηi,r bi,r

= −1

2
β−1

∑
i, j

h̄(xi) · h̄(x j)
∑

r

(
δyi ,r − ηi,r

)(
δy j ,r − η j,r

) +
∑
i,r

ηi,r bi,r

Let 1̄i be the vector with all components zero, except for the i th component which is
equal to one, and let 1̄ be the vector whose components are all one. Using this notation we
can rewrite the dual program in vector form as

max
η

Q(η) = −1

2
β−1

∑
i, j

[h̄(xi) · h̄(x j)]
[(

1̄yi − η̄i
) · (

1̄y j − η̄ j
)] +

∑
i

η̄i · b̄i

subject to: ∀i η̄i ≥ 0 and η̄i · 1̄ = 1 (25)

It is easy to verify that Q(η) is strictly convex in η. Since the constraints are linear the
above problem has a single optimal solution and therefore QP methods can be used to
solve it. In Section 6 we describe a memory efficient algorithm for solving this special QP
problem.

To simplify the equations we denote by τ̄i = 1̄yi − η̄i the difference between the cor-
rect point distribution and the distribution obtained by the optimization problem, Eq. (19)
becomes,

M̄r = β−1
∑

i

h̄(xi)τi,r (26)

Since we look for the value of the variables which maximize the objective function Q (and
not the optimum of Q itself), we can omit constants and write the dual problem given by

LEARNABILITY AND DESIGN OF OUTPUT CODES 215

Eq. (25) as,

max
τ

Q(τ) = −1

2
β−1

∑
i, j

[h̄(xi) · h̄(x j)](τ̄i · τ̄ j) −
∑

i

τ̄i · b̄i

subject to: ∀i τ̄i ≤ 1̄yi and τ̄i · 1̄ = 0 (27)

Finally, the classifier H(x) can be written in terms of the variable τ as,

H(x) = arg max
r

{h̄(x) · M̄r }

= arg max
r

{
h̄(x) ·

[
β−1

∑
i

h̄(xi)τi,r

]}

= arg max
r

{
β−1

∑
i

τi,r [h̄(x) · h̄(xi)]

}

= arg max
r

{ ∑
i

τi,r [h̄(x) · h̄(xi)]

}
. (28)

As in Support Vector Machines, the dual program and the classification algorithm depend
only on inner products of the form h̄(xi) · h̄(x). Therefore, we can perform the calculations
in some high dimensional inner-product space Z using a transformation φ̄ : R

l → Z . We
thus replace the inner-product in Eq. (27) and in Eq. (28) with a general inner-product kernel
K that satisfies Mercer conditions (Vapnik, 1998). The general dual program is therefore,

max
τ

Q(τ) = −1

2
β−1

∑
i, j

K (h̄(xi), h̄(x j)) (τ̄i · τ̄ j) −
∑

i

τ̄i · b̄i

subject to: ∀i τ̄i ≤ 1̄yi and τ̄i · 1̄ = 0 (29)

and the classification rule H(x) becomes,

H(x) = arg max
r

{ ∑
i

τi,r K (h̄(x), h̄(xi))

}
(30)

The general framework for designing output codes using the QP program described above,
also provides, as a special case, a new algorithm for building multiclass Support Vector
Machines. Assume that the instance space is the vector space R

n and define h̄(x̄)
def= x̄ (thus

l = n), then the primal program in Eq. (16) becomes

min
M,ξ

1

2
β‖M‖2

2 +
m∑

i=1

ξi

subject to: ∀i, r ξi + x̄i · M̄yi − x̄i · M̄r ≥ bi,r (31)

Note that for k = 2 Eq. (31) reduces to the primal program of SVM, if we take M̄1 = −M̄2

and C = β−1. We would also like to note that this special case is reminiscent of the multiclass

216 K. CRAMMER AND Y. SINGER

Table 1. Summary of the sizes of the optimization problems for different norms.

l1 l2 l∞

Primal Variables m + 2kl m + kl m + kl + 1

0-Constraints 0 0 0

Constraints km + 2kl km km + 2kl

Dual Variables km + 2kl km km + 2kl

0-Constraints km + 2kl km km + 2kl

Constraints m + 2kl m m + kl + 1

approach for SVM’s suggested by Weston and Watkins (1999). Their approach compared the
confidence K (x, M̄y) to the confidences of all other labels K (x, M̄r) and had m(k−1) slack
variables in the primal problem. In contrast, in our framework the confidence K (x, M̄y) is
compared to maxr �=y K (x, M̄r) and has only m slack variables in the primal program.

In Table 1 we summarize the properties of the programs discussed above. As shown in
the table, the advantage of using l2 in the objective function is that the number of variables
in the dual problem is only a function of k and m and does not depend on the number of
columns l in M . The number of columns in M only affects the evaluation of the inner-product
kernel K .

The formalism given by Eq. (15) can also be used to construct the code matrix incremen-
tally (column by column). We now outline the incremental (inductive) approach. However,
we would like to note that this method only applies when K (v̄, ū) = v̄ · ū. In the first step
of the incremental algorithm, we are given a single binary classifier h1(x) and we need to
construct the first column of M . We rewrite Eq. (15) in a scalar form and obtain,

min
M

β‖M‖p +
m∑

i=1

ξi

subject to: ∀i, r h1(xi)Myi − h1(xi)Mr ≥ bi,r − ξi . (32)

Here, β ≥ 0 is a given constant and bi,r = 1 − δyi ,r , as before. For the rest of the columns
we assume inductively that h1(x), . . . , hl(x) have been provided and the first l columns of
the matrix M have been found. In addition, we are provided with a new binary classifier
hl+1(x)

def= h′(x) for the next column. We need to find a new column of M (indexed l + 1).
We substitute the new classifier and the matrix in Eq. (14) and get,

∀i max
r

{
h̄(xi) · M̄r + h′(xi)M ′

r + 1 − δyi ,r
} − (

h̄(xi) · M̄yi + h′(xi)M ′
yi

) = ξi .

The constraints appearing in Eq. (15) now become

h̄(xi) · M̄yi + h′(xi)M ′
yi

− h̄(xi) · M̄r − h′(xi)M ′
r ≥ 1 − δyi ,r − ξi

⇒ h′(xi)M ′
yi

− h′(xi)M ′
r ≥ −[

h̄(xi) · M̄yi − h̄(xi) · M̄r
] + 1 − δyi ,r − ξi .

LEARNABILITY AND DESIGN OF OUTPUT CODES 217

We now redefine bi,r to be −[h̄(xi) · M̄yi − h̄(xi) · M̄r] + 1 − δyi ,r . It is straightforward to
verify that this definition of bi,r results in an equation of the same form of Eq. (32). We
can thus apply the same algorithms designed for the “batch” case. In the case of l1 and l∞,
this construction decomposes a single problem into l sub-problems with fewer variables
and constraints. However, for l2 the size of the program remains the same while we lose the
ability to use kernels. We therefore concentrate on the batch case for which we need to find
the entire matrix at once.

6. An efficient algorithm for the QP problem

The quadratic program presented in Eq. (29) can be solved using standard QP techniques.
As shown in Table 1 the dual program depends on mk variables and has km +m constraints
all together. Converting the dual program in Eq. (29) to a standard QP form requires storing
and manipulating a matrix with (mk)2 elements. Clearly, this would prohibit applications of
non-trivial size. We now introduce a memory efficient algorithm for solving the quadratic
optimization problem given by Eq. (29).

First, note that the constraints in Eq. (29) can be divided into m disjoint subsets {τ̄i ≤ 1̄yi ,
τ̄i · 1̄ = 0}m

i=1. The algorithm we describe works in rounds. On each round it picks a single
set {τ̄i ≤ 1̄yi , τ̄i ·1̄ = 0}, and modifies τ̄i so as to optimize the reduced optimization problem.
The algorithm is reminiscent of Platt’s SMO algorithm (Platt, 1998). Note, however, that
our algorithm optimizes one example on each round, and not two as in SMO.

Let us fix an example index p and write the objective function only in terms of the
variables τ̄p. For brevity, let Ki, j = K (h̄(xi), h̄(x j)). We isolate τ̄p in Q.

Qp(τ̄p)
def= −1

2
β−1

∑
i, j

Ki, j (τ̄i · τ̄ j) −
∑

i

τ̄i · b̄i

= −1

2
β−1 K p,p(τ̄p · τ̄p) − β−1

∑
i �=p

Ki,p(τ̄p · τ̄i) − 1

2
β−1

∑
i, j �=p

Ki, j (τ̄i · τ̄ j)

− τ̄p · b̄p −
∑
i �=p

τ̄i · b̄i

= −1

2
β−1 K p,p(τ̄p · τ̄p) − τ̄p ·

[
b̄p + β−1

∑
i �=p

Ki,p τ̄i

]

+
[

− 1

2
β−1

∑
i, j �=p

Ki, j (τ̄i · τ̄ j) −
∑
i �=p

τ̄i · b̄i

]

= −1

2
Ap(τ̄p · τ̄p) − B̄p · τ̄p + C p (33)

where,

Ap = β−1 K p,p > 0 (34)

B̄p = b̄p + β−1
∑
i �=p

Ki,p τ̄i (35)

218 K. CRAMMER AND Y. SINGER

C p = −1

2
β−1

∑
i, j �=p

Ki, j (τ̄i · τ̄ j) −
∑
i �=p

τ̄i · b̄i (36)

For brevity, we will omit the index p and drop constants (that do not affect the solution).
The reduced optimization has k variables and k + 1 constraints,

max
τ

Q(τ̄) = −1

2
A(τ̄ · τ̄) − B̄ · τ̄

subject to: τ̄ ≤ 1̄y and τ̄ · 1̄ = 0 (37)

Although this program can be solved using a standard QP technique, it still requires large
amount of memory when k is large, and a straightforward solution is also time consuming.
Furthermore, this problem constitutes the core and inner-loop of the algorithm. We therefore
further develop the algorithm and describe a more efficient method for solving Eq. (37).
We write Q(τ̄) in Eq. (37) using a completion to quadratic form,

Q(τ̄) = −1

2
A(τ̄ · τ̄) − B̄ · τ̄

= −1

2
A

[(
τ̄ + B̄

A

)
·
(

τ̄ + B̄

A

)]
+ B̄ · B̄

2A

Since A > 0 the program from Eq. (37) becomes,

min
ν

Q(ν̄) = ‖ν̄‖2

subject to: ν̄ ≤ D̄ and ν̄ · 1̄ = D̄ · 1̄ − 1 (38)

where,

ν̄ = τ̄ + B̄

A
D̄ = B̄

A
+ 1̄y (39)

In Section 6.1 we discuss an analytic solution to Eq. (38) and in Section 6.2 we describe a
time efficient algorithm for computing the analytic solution.

6.1. An analytic solution

While the algorithm we describe in this section is simple to implement and efficient, its
derivation is quite complex. Before describing the analytic solution to Eq. (38), we would
like to give some intuition on our method. Let us fix some vector D̄ and denote µ = ν̄ · 1̄.
First note that ν̄ = D̄ is not a feasible point since the constraint ν̄ · 1̄ = D̄ · 1̄ − 1 is not
satisfied. Hence for any feasible point some of the constraints ν̄ ≤ D̄ are not tight. Second,
note that the differences between the bounds Dr and the variables νr sum to one. Let us
induce a uniform distribution over the components of ν̄. Then, the variance of ν̄ is

σ 2 = E[ν2] − [Eν]2 = 1

k
‖ν̄‖2 − 1

k2
µ2

LEARNABILITY AND DESIGN OF OUTPUT CODES 219

Figure 1. An illustration of two feasible points for the reduced optimization problem with D̄ = (1.0, 0.2, 0.6,

0.8, 0.6). The x-axis is the index of the point, and the y-axis denotes the values ν̄. The right plot has a smaller
variance hence it achieves a better value for Q.

Since the expectation µ is constrained to a given value, the optimal solution is the vector
achieving the smallest variance. That is, the components of of ν̄ should attain similar values,
as much as possible, under the inequality constraints ν̄ ≤ D̄. In figure 1 we illustrate this
motivation. We picked D̄ = (1.0, 0.2, 0.6, 0.8, 0.6) and show plots for two different feasible
values for ν̄. The x-axis is the index r of the point and the y-axis designates the values of
the components of ν̄. The norm of ν̄ on the plot on the right hand side plot is smaller than
the norm of the plot on the left hand side. The right hand side plot is the optimal solution
for ν̄. The sum of the lengths of the arrows in both plots is D̄ · 1̄ − ν̄ · 1̄. Since both sets
of points are feasible, they satisfy the constraint ν̄ · 1̄ = D̄ · 1̄ − 1. Thus, the sum of the
lengths of the “arrows” in both plots is one. We exploit this observation in the algorithm
we describe in the sequel.

We therefore seek a feasible vector ν̄ whose most of its components are equal to some
threshold θ . Given θ we define a vector ν̄ whose its r th component equal to the minimum
between θ and Dr , hence the inequality constraints are satisfied. We define

νθ
r =

{
θ θ ≤ Dr

Dr θ > Dr
(40)

We denote by

F(θ) = ν̄θ · 1̄ =
k∑

r=1

νθ
r .

Using F , the equality constraint from Eq. (38) becomes F(θ) = D̄ · 1̄ − 1.
Let us assume without loss of generality that the components of the vector ν̄ are given in

a descending order, D1 ≥ D2 ≥ . . . Dk (this can be done in k log k time). Let Dk+1 = −∞
and D0 = ∞. To prove the main theorem of this section we need the following lemma.

220 K. CRAMMER AND Y. SINGER

Lemma 1. F(θ) is piecewise linear with a slope r in each range (Dr+1, Dr) for r =
0, . . . , k.

Proof: Let us develop F(θ).

F(θ) =
k∑

r=1

{
θ θ ≤ Dr

Dr θ > Dr

=
k∑

r=1

{[[θ > Dr]]Dr + [[θ ≤ Dr]]θ}

=
k∑

r=1

[[θ > Dr]]Dr + θ

k∑
r=1

[[θ ≤ Dr]]

Note that if θ > Dr then θ > Du for all u ≥ r . Also, the equality
∑k

r ′=1[[θ ≤ Dr ′]] = r holds
for each θ in the range Dr+1 < θ < Dr . Thus, for Dr+1 < θ < Dr (r = 0 · · · k), the function
F(θ) has the form,

F(θ) =
k∑

u=r+1

Du + rθ (41)

This completes the proof. ✷

Corollary 1. There exists a unique θ0 ≤ D1 such that F(θ0) = D̄ · 1̄ − 1.

Proof: From Lemma 1 (Eq. (41)) we conclude that F(θ) is strictly increasing and continu-
ous in the range θ ≤ D1. Therefore, F(θ) has an inverse in that range, using the theorem that
every strictly increasing and continuous function has an inverse. Since F(θ) = kθ for θ ≤ Dk

then F(θ) → −∞ as θ → −∞. Hence, the range of F for the interval (−∞, D1] is the in-

terval (−∞, D̄ · 1̄] which clearly contains D̄ · 1̄−1. Thus θ0
def= F−1(D̄ · 1̄−1) ∈ [−∞, D1]

as needed. Uniqueness of θ0 follows the fact that the function F is a one-to-one mapping
onto (−∞, D̄ · 1̄]. ✷

We now can prove the main theorem of this section.

Theorem 3. Let θ0 be the unique solution of F(θ) = D̄ · 1̄ − 1. Then ν̄θ0 is the optimum
value of the optimization problem stated in Eq. (38).

The theorem tells us that the optimum value of Eq. (38) is of the form defined by Eq. (40)
and that there is exactly one value of θ for which the equality constraint F(θ) = ν̄θ · 1̄ =
D̄ · 1̄ − 1 holds. A plot of F(θ) and the solution for θ from figure 1 are shown in figure 2.

Proof: Corollary 1 implies that a solution exists and is unique. Note also that from defi-
nition of θ0 we have that the vector ν̄θ0 is a feasible point of Eq. (38). We now prove that ν̄θ0

is the optimum of Eq. (38) by showing that ‖ν̄‖2 > ‖ν̄θ0‖2 for all feasible points ν̄ �= ν̄θ .

LEARNABILITY AND DESIGN OF OUTPUT CODES 221

Figure 2. An illustration of the solution of the QP problem using the inverse of F(θ) for D̄ = (1.0, 0.2,

0.6, 0.8, 0.6). The optimal value is the solution for the equation F(θ) = 2.2 which is 0.5.

Assume, by contradiction, that there is a vector ν̄ such that ‖ν̄‖2 ≤ ‖ν̄θ0‖2. Let ε̄
def=

ν̄ − ν̄θ �= 0̄, and define I
def= {r : νθ

r = Dr } = {r : θ0 > Dr }. Since both ν̄ and ν̄θ0 satisfy the
equality constraint of Eq. (38), we have,

ν̄ · 1̄ = ν̄θ0 · 1̄ ⇒ (ν̄ − ν̄θ0) · 1̄ = 0

⇒ ε̄ · 1̄ =
k∑

r=1

εr = 0 (42)

Since ν̄ is a feasible point we have ν̄ = ν̄θ0 + ε̄ ≤ D̄. Also, by the definition of the set I we
have that νθ

r = Dr for all r ∈ I . Combining the two properties we get,

εr ≤ 0 for all r ∈ I (43)

We start with the simpler case of εr = 0 for all r ∈ I . In this case, ν̄ differs from ν̄θ0 only
on a subset of the coordinates r /∈ I . However, for these coordinates the components of ν̄θ0

are equal to θ0, thus we obtain a zero variance from the constant vector whose components

222 K. CRAMMER AND Y. SINGER

are all θ0. Therefore, no other feasible vector can achieve a better variance. Formally, since
εr = 0 for all r ∈ I , then the terms for r ∈ I cancel each other,

‖ν̄‖2 − ‖ν̄θ0‖2 =
k∑

r=1

(
νθ0

r + εr
)2 −

k∑
r=1

(
νθ0

r

)2

=
∑
r /∈I

(
νθ0

r + εr
)2 −

∑
r /∈I

(
νθ0

r

)2
.

From the definition of ν̄θ0 in Eq. (40) we get that νθ0
r = θ0 for all r /∈ I ,

‖ν̄‖2 − ‖ν̄θ0‖2 =
∑
r /∈I

(θ0 + εr)
2 −

∑
r /∈I

θ2
0

= 2θ0

∑
r /∈I

εr +
∑
r /∈I

ε2
r .

We use now the assumption that εr = 0 for all r ∈ I and the equality
∑k

r=1 εr = 0 (Eq. (42))
to obtain,

‖ν̄‖2 − ‖ν̄θ0‖2 = 2θ0

k∑
r=1

εr +
k∑

r=1

ε2
r =

k∑
r=1

ε2
r > 0

and we get a contradiction since ε̄ �= 0̄.
We now turn to prove the complementary case in which

∑
r∈I εr < 0. Since

∑
r∈I εr < 0,

then there exists u ∈ I such that εu < 0. We use again Eq. (42) and conclude that there exists
also v /∈ I such that εv > 0. Let us assume without loss of generality that εu + εv < 0
(The case εu + εv ≥ 0 follows analogously by switching the roles of u and v). Define ν̄ ′ as
follows,

ν ′
r =

νu + εv r = u

νv − εv r = v

νr otherwise

The vector ν̄ ′ satisfies the constraints of Eq. (38) since ν ′
u = νu + εv = Du + εu + εv < Du

and ν ′
v = νv − εv = θ0 + εv − εv = θ0 ≤ Dv . Since ν̄ and ν̄ ′ are equal except for their u

and v components we get,

‖ν̄ ′‖2 − ‖ν̄‖2 = [(ν ′
u)

2 + (ν ′
v)

2] − [(νu)
2 + (νv)

2]

Substituting the values for ν ′
u and ν ′

v from the definition of ν̄ ′ we obtain,

‖ν̄ ′‖2 − ‖ν̄‖2 = [(νu + εv)
2 + (νv − εv)

2] − [(νu)
2 + (νv)

2]

= ε2
v + 2νuεv + ε2

v − 2νvεv

= 2ε2
v + 2(νu − νv)εv

LEARNABILITY AND DESIGN OF OUTPUT CODES 223

Using the definition of ν̄ and ν̄θ0 for νu = νθ0
u + εu = Du +εu and for νv = νθ0

v + εv = θ0+εv

we obtain,

‖ν̄ ′‖2 − ‖ν̄‖2 = 2ε2
v + 2(Du + εu − θ0 − εv)εv

= 2(Du + εu − θ0)εv

= 2εuεv + 2(Du − θ0)εv

The first term of the bottom equation is negative since εu < 0 and εv > 0. Also u ∈ I , hence
θ0 > Du and the second term is also negative. We thus get,

‖ν̄ ′‖2 − ‖ν̄‖2 < 0.

which is a contradiction. ✷

6.2. An efficient algorithm for computing the analytic solution

The optimization problem of Eq. (38) can be solved using standard QP methods, and
interior point methods in particular (Fletcher, 1987). For these methods the computation
time is �(k2). In this section we give an algorithm for solving that optimization problem
in O(k log k) time, by solving the equation F(θ) = D̄ · 1̄ − 1.

As before, we assume that the components of the vector ν̄ are given in a descending order,
D1 ≥ D2 ≥ . . . Dk and we denote Dk+1 = −∞. The algorithm searches for the interval
[Dr+1, Dr) which contains θ0. We now use simple algebraic manipulations to derive the
search scheme for θ0. Since F(D1) = F(θ0) + 1,

θ0 ∈ [Dr+1, Dr) ⇔ 1 > F(D1) − F(Dr) and F(D1) − F(Dr+1) ≥ 1.

For convenience, we define the potential function

�(r) = 1 − [F(D1) − F(Dr)], (44)

and obtain,

θ0 ∈ [Dr+1, Dr) ⇔ �(r) > 0 and �(r + 1) ≤ 0

Also note that,

�(r) − �(r + 1) = {1 − [F(D1) − F(Dr)]} − {1 − [F(D1) − F(Dr+1)]}
= F(Dr) − F(Dr+1).

Recall that the function F(θ) is linear in each interval [Dr+1, Dr) with a slope r (Lemma 1),
hence,

F(Dr) − F(Dr+1) = r(Dr − Dr+1)

⇒ �(r + 1) = �(r) − r(Dr − Dr+1). (45)

224 K. CRAMMER AND Y. SINGER

To solve the equation F(θ) = D̄ · 1̄−1, we first find r such that �(r) > 0 and �(r +1) ≤ 0,
which implies that θ0 ∈ [Dr+1, Dr). Using Eq. (44) and the equation F(D1) = F(θ0) + 1
we get,

F(Dr) − F(θ0) = �(r).

Using the linearity of F(θ) we obtain,

F(Dr) − F(θ0) = r(Dr − θ0) ⇒ r(Dr − θ0) = �(r)

therefore

θ0 = Dr − �(r)

r
. (46)

The complete algorithm is described in figure 3. Since it takes O(k log k) time to sort the
vector D̄ and another O(k) time for the loop search, the total run time is O(k log k).

We are finally ready to give the algorithm for solving learning problem described by
Eq. (29). Since the output code is constructed of the supporting patterns we term our
algorithm SPOC for Support Pattern Output Coding. The SPOC algorithm is described in
figure 4. We have also developed methods for choosing an example p to modify on each
round and a stopping criterion for the entire optimization algorithm. The complete details
of the algorithms along with the results of experiments we have conducted will appear
elsewhere.

We have performed preliminary experiments with synthetic data in order to check the
actual performance of our algorithm. We tested the special case corresponding to multiclass
SVM by setting h̄(x) = x . The code matrices we test are of k = 4 rows (classes) and l = 2
columns. We varied the size of the training set size from m = 10 to m = 250. The examples
were generated using the uniform distribution over [−1, 1]×[−1, 1]. The domain [−1, 1]×
[−1, 1] was partitioned into four quarters of equal size: [−1, 0] × [−1, 0], [−1, 0] × [0, 1],

Figure 3. The algorithm for finding the optimal solution of the reduced quadratic program (Eq. (38)).

LEARNABILITY AND DESIGN OF OUTPUT CODES 225

Figure 4. A skeleton of the algorithm for finding a classifier based on an output code by solving the quadratic
program defined in Eq. (29).

Figure 5. Run time comparison of two algorithms for code design using quadratic programming: Matlab’s
standard QP package and the proposed algorithm (denoted SPOC). Note that we used a logarithmic scale for the
run-time (y) axis.

226 K. CRAMMER AND Y. SINGER

[0, 1] × [−1, 0], and [0, 1] × [0, 1]. Each quarter was associated with a different label. For
each sample size we tested, we ran the algorithm three times, each run used a different
randomly generated training set. We compared the standard quadratic optimization routine
available from Matlab with our algorithm which was also implemented in Matlab. The
average running time results are shown in figure 5. Note that we used a log-scale for the y
(run-time) axis. The results show that the efficient algorithm can be two orders of magnitude
faster than the standard QP package.

7. Generalization

In this section we analyze the generalization properties of the algorithm. For simplicity, we
give our analysis using the scalar product kernel K (x, y) = x · y, assuming h̄(x̄) = x̄ . The
multiclass SVM version described in Eq. (13) now becomes,

min
M

1

2
‖M‖2

2

subject to: ∀i, r M̄yi · x̄i − M̄r · x̄i ≥ 1 − δyi ,r (47)

Let M be a matrix of size k × l over R which satisfies the constraints of Eq. (47). Each
row of the matrix M corresponds to a class y ∈Y and the induced classifier is given by
H(x) = arg max{M̄r · x̄}. Analogously, the matrix M induces a binary classifier for each
pair of classes r and s as follows. We say that the label of an instance x̄ is not r iff
M̄r · x̄ < M̄s · x̄ . Let w̄r,s be the vector M̄r − M̄s . Then, the resulting binary SVM classifier
for distinguishing between classes r and s is

hr,s(x̄) = sign(w̄r,s · x̄), (48)

where we interpret a positive prediction as a rejection of the label s.
We view the distance of a point x̄ to the hyperplane w̄r,s · x̄ = 0 as the confidence in the

classification of hr,s(x̄). This distance is given by the equation

d(x̄, w̄r,s) = |w̄r,s · x̄ |
‖w̄r,s‖

We now define the margin γr,s of the classifier hr,s(x̄) to be the minimum confidence
achieved on any of the instances labeled r or s. That is,

γr,s = min
(x̄,y)∈S,y∈{r,s}

{d(x̄, w̄r,s)}

= min
(x̄,y)∈S,y∈{r,s}

{ |w̄r,s · x̄ |
‖w̄r,s‖

}

Since the matrix M is a feasible solution for Eq. (47) then M̄r · x̄ − M̄s · x̄ ≥ 1 holds for
any instance labeled r , and similarly M̄s · x̄ − M̄r · x̄ ≥ 1 holds for any instance labeled s.

LEARNABILITY AND DESIGN OF OUTPUT CODES 227

Hence, we obtain that

∀i s.t. yi ∈ {r, s} |w̄r,s · x̄ | ≥ 1,

which leads to the following lower bound on the margin,

γr,s ≥ 1

‖w̄r,s‖ (49)

We show in the sequel that minimization of the quantity D = ∑
r<s

1
γ 2

r,s
results in a small

generalization error. Using Eq. (49) we get that

D ≤
∑
r<s

‖w̄r,s‖2
2 =

∑
r<s

‖M̄r − M̄s‖2
2 (50)

Since it is easier to minimize the above bound on D, we rewrite the problem as follows,

min
M

1

2

∑
r<s

‖M̄r − M̄s‖2
2

subject to: ∀i, r M̄yi · x̄i − M̄r · x̄i ≥ 1 − δyi ,r (51)

We now show that this problem is equivalent to the optimization problem of Eq. (47), up to
additive and multiplicative constants.

To solve the primal problem of Eq. (47) we use the same technique described in Section
5.2. Formally, we solve the optimization problem by finding a saddle point of the Lagrangian:

L(M, η) = 1

2

∑
r<s

‖M̄r − M̄s‖2
2 +

∑
i,r

ηi,r [x̄i · M̄r − x̄i · M̄yi + bi,r]

(52)
subject to: ∀i, r ηi,r ≥ 0

The saddle point we are seeking is a minimum for the primal variables (M), and the
maximum for the dual variables (η). To find the minimum for the primal variables we
require,

∂

∂ M̄r
L =

∑
i

ηi,r x̄i −
∑

i,yi =r

x̄i

(∑
q

ηi,q

)
+ (k − 1)M̄r −

k∑
s=1,s �=r

M̄s = 0

⇒ k M̄r −
k∑

s=1

M̄s =
∑

i

x̄i

(
δyi ,r

∑
q

ηi,q − ηi,r

)
(53)

Note that the k equations given in Eq. (53) are linearly dependent since by summing the
equation over all possible values for r we get,

k∑
r=1

[
k M̄r −

k∑
s=1

M̄s

]
= k

k∑
r=1

M̄r − k
k∑

s=1

M̄s = 0.

228 K. CRAMMER AND Y. SINGER

Therefore, the above equations contain at least one degree of freedom. To prove that this is
the only degree of freedom we use the claim that for any two matrices A and B with the
same dimensions we have that,

rk(A − B) ≥ rk(A) − rk(B). (54)

To use the claim we define two matrices of size k × k. We set the matrix A to be a diagonal
matrix with values k on the diagonal, and the matrix B to be a matrix which all elements
are equal +1. Note that rk(A) = k and rk(B) = 1. Since we can write the above linear
equations (Eq. (53)) as a difference of A and B we can apply Eq. (54) and get that the rank
of the above system is at least k − 1, and thus there is exactly one degree of freedom.

Let us represent the degree of freedom by setting
∑k

r=1 M̄r = c̄ and obtain,

c̄ · c̄ =
(

k∑
r=1

M̄r

)
·
(

k∑
s=1

M̄s

)

=
k∑

r,s=1

M̄r · M̄s

=
k∑

r=1

‖M̄r‖2 + 2
∑
r<s

M̄r · M̄s (55)

Developing the objective function of Eq. (51) we get,

1

2

∑
r<s

‖M̄r − M̄s‖2 = 1

2

∑
r<s

(M̄r − M̄s) · (M̄r − M̄s)

= 1

2
(k − 1)

k∑
r=1

‖M̄r‖2 −
∑
r<s

M̄r · M̄s (56)

Finally, substituting Eq. (55) into Eq. (56) we get,

1

2

∑
r<s

‖M̄r − M̄s‖2 = 1

2
(k − 1)

k∑
r=1

‖M̄r‖2 − 1

2

(
c̄ · c̄ −

k∑
r=1

‖M̄r‖2

)

= 1

2
k

k∑
r=1

‖M̄r‖2 − 1

2
(c̄ · c̄) (57)

Note that the resulting equation is a monotonically increasing linear transformation of the
objective function of Eq. (47). By setting c̄ = 0 in Eq. (57) we maximize the value of the

LEARNABILITY AND DESIGN OF OUTPUT CODES 229

right hand side of the equation and obtain the following upper bound on the margin

D ≤ k‖M‖2 (58)

To conclude, we have shown that solving the optimization problems given in Eqs. (47)
and (13) results in the minimization of the quantity D which, as we now show, is directly
related to the margin of the classifier.

To relate the margin to the generalization error of the multiclass SVM we use the approach
proposed by Platt, Cristianini, and Shawe-Taylor (2000) for reducing multiclass problems
to multiple binary problems. Their method is also composed of two stages. In the training
stage the set of all (k

2) binary SVM classifiers is constructed, where each classifier is trained
to distinguish between a pair of distinct labels. In the classification stage the algorithm
maintains a list of all possible labels for a given test instance (initialized to the list of all
labels). The classification algorithm runs in rounds: on each round it picks two labels from
the list above and applies the appropriate binary classifier to distinguish between the two
labels. The label that was rejected by the binary classifier is removed from the list. After
k − 1 such rounds exactly one label remains in the list. This label is the prediction of the
multiclass classifier. Platt, Cristianini, and Shawe-Taylor (2000) presented the the above
classification scheme by a rooted binary directed acyclic graph (DAG) which they named
DDAG for decision DAG. The following theorem gives a bound on the generalization error
for DDAGs.

Theorem 4 (Platt, Cristianini, & Shawe-Taylor, 2000). Suppose we are able to classify
a random m sample S of labeled examples using a SVM DDAG on k classes containing
K = (

k
2) decision nodes (and k leaves) with margin γr,s at node {r, s}, then we can bound

the generalization error with probability greater than 1 − δ to be less than

130R2

m

(
D′ log(4em)log(4m) + log

2(2m)K

δ

)

where D′ = ∑
r<s

1
γ 2

r,s
, and R is the radius of a ball containing the support of the distribution.

Plugging the binary classifiers induced by a matrix M as given by Eq. (48) results a stepwise
method for calculating the maximum among {M̄r · x̄}, and thus the prediction of the classifier
H(x) = arg max{M̄r · x̄}. We now can use Theorem 4 from (Platt, Cristianini, & Shawe-
Taylor, 2000) by combining it with the bound of Eq. (58).

Corollary 2. Suppose we are able to classify a random m sample S of labeled examples
using a multiclass SVM with a matrix M, then we can bound the generalization error with
probability greater than 1 − δ to be less than

130R2

m

(
k‖M‖2 log(4em)log(4m) + log

2(2m)K

δ

)

where R is the radius of a ball containing the support of the distribution.

230 K. CRAMMER AND Y. SINGER

We use a second theorem from (Platt, Cristianini, & Shawe-Taylor, 2000) to bound the
generalization error for each possible label individually. Following Platt, Cristianini, and
Shawe-Taylor (2000) we define the error in identifying class r as

εr (M) = Pr {(x̄, y) : [y = r ∧ H(x̄) �= r] ∨ [y �= r ∧ H(x̄) = r]}

We use the same technique as above to to get a bound similar to Eq. (50). Based on Theorem 2
from (Platt, Cristianini, & Shawe-Taylor, 2000) we get the following corollary.

Corollary 3. Suppose we are able to correctly distinguish some class r from the other
classes in a random sample S of m labeled examples using a multiclass SVM with a matrix
M, then with a probability greater than 1 − δ we have that,

εr (M) ≤ 130R2

m

(
(k‖M̄r‖2 + ‖M‖2) log(4em)log(4m) + log

2(2m)k−1

δ

)

where R is the radius of a ball containing the support of the distribution.

8. Conclusions and future research

In this paper we investigated the problem of designing output codes for solving multiclass
problems. We first discussed discrete codes and showed that while the problem is intractable
in general we can find the first column of a code matrix in polynomial time. The question
whether the algorithm can be generalized to l ≥ 2 columns with running time of O(2l) or
less remains open. Another closely related question is whether we can find efficiently the
next column given previous columns. Also left open for future research is further usage of
the algorithm for finding the first column as a subroutine in constructing codes based on
trees or directed acyclic graphs (Platt, Cristianini, & Shawe-Taylor, 2000), and as a tool for
incremental (column by column) construction of output codes.

Motivated by the intractability results for discrete codes we introduced the notion of
continuous output codes. We described three optimization problems for finding good con-
tinuous codes for a given a set of binary classifiers. We have discussed in detail an efficient
algorithm for one of the three problems which is based on quadratic programming. As a
special case, our framework also provides a new efficient algorithm for multiclass Support
Vector Machines. The importance of this efficient algorithm might prove to be crucial in
large classification problems with many classes such as Kanji character recognition. We
also devised efficient implementation of the algorithm. Finally, an important question which
we have tackled barely in this paper is the problem of interleaving the code design problem
with the learning of binary classifiers. A viable direction in this domain is combining our
algorithm for continuous codes with the support vector machine algorithm.

LEARNABILITY AND DESIGN OF OUTPUT CODES 231

Appendix A: Linear programming

Using the notation of Chvatal (1980), given the linear program:

max
x

n∑
j=1

c j x j

subject to:
n∑

j=1

ai j x j ≤ bi (i ∈ I)

n∑
j=1

ai j x j = bi (i ∈ E)

x j ≥ 0 (j ∈ R) (0-Constraints)

x j
>

<
0 (j ∈ F) (Unconstrained variables),

its dual program is:

min
y

m∑
i=1

bi yi

subject to:
m∑

i=1

ai j yi ≥ c j (j ∈ R)

m∑
i=1

ai j yi = c j (j ∈ F)

yi ≥ 0 (j ∈ I) (0-Constraints)

yi
>

<
0 (j ∈ E) (Unconstrained variables)

Appendix B: Legend

Var. name Description Section

S Sample 2

M Matrix code 2

m Sample size 2

k No. of classes (No. of rows in M) 2

l No. of hypotheses (No. of columns in M) 2

i Index of an example 2

r Index of a class 2

y Correct label (class) 2

t Index of an hypothesis 2

ξ Slack variables in optimization problem 5

232 K. CRAMMER AND Y. SINGER

Var. name Description Section

η Dual variables in quadric problem 5.2
τ τi,r = δyi ,r − ηi,r 5.2
Ap , A Coefficient in reduced optimization problem 6
Bp , B Coefficient in reduced optimization problem 6
C p Coefficient in reduced optimization problem 6

D̄ τ̄ + B̄
A 6

ν̄ B̄
A + 1̄y 6

Acknowledgment

We would like to thank Rob Schapire for numerous helpful discussions, to Vladimir Vapnik
for his encouragement and support of this line of research, and to Nir Friedman and Ran
Bachrach for useful comments and suggestions. Thanks also to the anonymous referees for
their constructive comments.

References

Aha, D. W., & Bankert, R. L. (1997). Cloud classification using error-correcting output codes. Artificial Intelligence
Applications: Natural Science, Agriculture, and Environmental Science, 11, 13–28.

Allwein, E., Schapire, R., & Singer, Y. (2000). Reducing multiclass to binary: A unifying approach for margin
classifiers. Machine Learning: Proceedings of the Seventeenth International Conference.

Berger, A. (1999). Error-correcting output coding for text classification. In IJCAI’99: Workshop on Machine
Learning for Information Filtering.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Belmont,
CA: Wadsworth & Brooks.

Chvatal, V. (1980). Linear Programming. New York: Freeman.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20:3, 273–297.
Dietterich, G. B. T. G. (1999). Achieving high-accuracy text-to-speech with machine learning. In Data mining in

speech synthesis.
Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes.

Journal of Artificial Intelligence Research, 2, 263–286.
Dietterich, T., & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance

of decision tree algorithms. Technical report, Oregon State University. Available via the WWW at
http://www.cs.orst.edu:80/∼tgd/cv/tr.html.

Fletcher, R. (1987). Practical methods of optimization 2nd edn. New York: John Wiley.
Hastie, T., & Tibshirani, R. (1998). Classification by pairwise coupling. The Annals of Statistics, 26:1, 451–471.
Höffgen, K. U., Horn, K. S. V., & Simon, H. U. (1995). Robust trainability of single neurons. Journal of Computer

and System Sciences, 50:1, 114–125.
James, G., & Hastie, T. (1998). The error coding method and PiCT. Journal of Computational and Graphical

Stastistics, 7:3, 377–387.
Kong, E. B., & Dietterich, T. G. (1995). Error-correcting output coding corrects bias and variance. In Proceedings

of the Twelfth International Conference on Machine Learning (pp. 313–321).
Platt, J. (1998). Fast training of Support Vector Machines using sequential minimal optimization. In B. Schölkopf,

C. Burges, & A. Smola (Eds.), Advances in Kernel methods—support vector learning. Cambridge, MA: MIT
Press.

LEARNABILITY AND DESIGN OF OUTPUT CODES 233

Platt, J., Cristianini, N., & Shawe-Taylor, J. (2000). Large margin dags for multiclass classification. In Advances
in neural information processing systems 12 (pp. 547–553). Cambridge, MA: MIT Press.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In

D. E. Rumelhart, & J. L. McClelland (Eds.), Parallel distributed processing—explorations in the microstructure
of cognition (ch. 8, pp. 318–362). Cambridge, MA: MIT Press.

Schapire, R. E. (1997). Using output codes to boost multiclass learning problems. In Machine Learning: Proceed-
ings of the Fourteenth International Conference (pp. 313–321).

Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine
Learning, 37:3, 1–40.

Vapnik, V. N. (1998). Statistical Learning Theory. New York: Wiley.
Weston, J., & Watkins, C. (1999). Support vector machines for multi-class pattern recognition. In Proceedings of

the Seventh European Symposium On Artificial Neural Networks.

Received September 29, 2000
Revised May 17, 2001
Accepted July 2, 2001
Final manuscript July 2, 2001

