Skip to main content
Log in

On Computing the Size of a Lattice and Related Decision Problems

  • Published:
Order Aims and scope Submit manuscript

Abstract

The problem of determining the size of a finite concept lattice is shown to be #P-complete. Since any finite lattice can be represented as a concept lattice, the problem of determining the size of a lattice given by the ordered sets of its irreducibles is also #P-complete. Some results about NP-completeness or polynomial tractability of decision problems related to concepts with bounded extent, intent, and the sum of both are given. These problems can be reformulated as decision problems about lattice elements generated by a certain amount of irreducibles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbut, M. and Monjardet, B. (1970) Ordre et Classification, Algèbre et Combinatoire, 2 tomes, Hachette, Paris.

    Google Scholar 

  2. Bordat, J. P. (1986) Calcul pratique du treillis de Galois d'une correspondance,Math. Sci. Hum. 96, 31–47.

    Google Scholar 

  3. Ganter, B. (1984) Two basic algorithms in concept analysis, Preprint 831, Technische Hochschule Darmstadt.

    Google Scholar 

  4. Ganter, B. and Kuznetsov, S. (2000) Formalizing hypotheses with concepts, in G. Mineau and B. Ganter (eds), Proc. of the 8th Internat. Conf. on Conceptual Structures, ICCS'2000, Lecture Notes in Artificial Intelligence 1867, pp. 342–356.

  5. Ganter, B. and Wille, R. (1999) Formal Concept Analysis: Mathematical Foundations, Springer, Berlin.

    Google Scholar 

  6. Garey, M. and Johnson, D. (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York.

    Google Scholar 

  7. Habib, M. and Nourine, L. (1996) Tree structure for distributive lattices and its applications, Theoret. Comput. Sci. 165(2), 391–405.

    Google Scholar 

  8. Harary, F. (1969) Graph Theory, Addision-Wesley, Reading, MA.

    Google Scholar 

  9. Karp, R. and Hopcroft, G. A. (1973) 2.5-algorithm for maximum matching in bipartite graphs, SIAM J. Comput. 2(2), 225–231.

    Google Scholar 

  10. Kuznetsov, S. O. and Objedkov, S. A. (2001) Comparing performance of algorithms for generating concept lattices, in E. Mephu Nguifo et al. (eds), Proc. of the ICCS-2001 International Workshop on Concept Lattices-Based Theory, Methods and Tools for Knowledge Discovery in Databases (CLKDD '01), Stanford University, Palo Alto, pp. 35–47.

    Google Scholar 

  11. Norris, E. M. (1978) An algorithm for computing the maximal rectangles in a binary relation, Rev. Roumaine Math. Pures Appl. 23(2), 243–250.

    Google Scholar 

  12. Nourine, L. and Raynaud, O. (1999) A fast algorithm for building lattices, Inform. Process. Lett. 71, 199–204.

    Google Scholar 

  13. Schütt, D. (1988) Abschôtzungen für die Anzahl der Begriffe von Kontexten, Diplomarbeit TH Darmstadt, Darmstadt.

    Google Scholar 

  14. Valiant, L. G. (1979) The complexity of enumeration and reliability problems, SIAMJ. Comput. 8(3), 410–421.

    Google Scholar 

  15. Wille, R. (1982) Restructuring lattice theory: An approach based on hierarchies of concepts, in I. Rival (ed.), Ordered Sets, Reidel, Dordrecht/Boston, pp. 445–470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, S.O. On Computing the Size of a Lattice and Related Decision Problems. Order 18, 313–321 (2001). https://doi.org/10.1023/A:1013970520933

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013970520933

Navigation