Skip to main content
Log in

On the Galerkin Method Based on a Particular Class of Scaling Functions

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide a large class of scaling functions for which the convergence analysis for the Galerkin method developed in [9] is applicable, whereas in that paper the only scaling functions considered for practical applications are B-splines and a few of the orthonormal Daubechies scaling functions. The functions considered here, were recently introduced in [12] where it was proved that they satisfy many properties making them interesting for the applications. In particular, here we show that the use of these functions has some advantages with respect to other basis functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Canuto, A. Tabacco and K. Urban, The wavelet element method. Part I: Construction and analysis, Appl. Comput. Harmon. Anal. 6 (1999) 1–52.

    Google Scholar 

  2. A. Cohen, Numerical anlysis of wavelets methods, in: Handbook in Numerical Analysis, Vol. VII, eds. P.G. Ciarlet and J.L. Lions (Elsevier, Amsterdam, 2000).

    Google Scholar 

  3. W. Dahmen, Wavelet and multiscale methods for operator equations, Acta Numer. 6 (1997) 55–228.

    Google Scholar 

  4. W. Dahmen and C.A. Micchelli, Using the refinement equation for evaluating integrals of wavelets, SIAM J. Numer. Anal. 30 (1993) 507–537.

    Google Scholar 

  5. J. Douglas, Jr. and T. Dupont, Galerkin method for parabolic equations, SIAM J. Numer. Anal. 7 (1970) 575–626.

    Google Scholar 

  6. G. Fix and G. Strang, Fourier analysis of the finite element method in Ritz-Galerkin theory, Stud. Appl. Math. 48 (1969) 265–273.

    Google Scholar 

  7. J. Fröhlich and K. Schneider, An adaptive wavelet-vaguelette algorithm for the solution of PDEs, J. Comput. Phys. 130 (1997) 174–190.

    Google Scholar 

  8. R. Glowinski, W. Lawton, M. Ravachol and E. Tenenbaum, Wavelet solutions of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension, in: Computing Methods in Applied Science and Engineering, Paris, 1990, eds. R. Glowinski and A. Lichnewsky (SIAM, Philadelphia, PA, 1990), pp. 55–120.

    Google Scholar 

  9. S.M. Gomes and E. Cortina, Convergence estimates for the wavelet Galerkin method, SIAMJ. Numer. Anal. 33 (1996) 149–161.

    Google Scholar 

  10. T.N.T. Goodman and C.A. Micchelli, On refinement equations determined by Pólya frequency sequence, SIAM J. Math. Anal. 23 (1992) 766–784.

    Google Scholar 

  11. L. Gori and F. Pitolli, Multiresolution analysis based on certain compactly supported refinable functions, in: Approx. Opt., Cluj-Napoca, 1996, eds. G. Coman, W.W. Breckner and P. Blaga (Transilvania Press, 1997), pp. 81–90.

    Google Scholar 

  12. L. Gori and F. Pitolli, A class of totally positive refinable functions, Rend. Mat. Appl. (Ser. 7) 20 (2000) 305–322.

    Google Scholar 

  13. L. Gori and F. Pitolli, Refinable functions and positive operators, submitted.

  14. M.L. Lo Cascio and F. Pitolli, Generalized cardinal interpolation by refinable functions: some numerical results, Note Mat. 15 (1995) 191–201.

    Google Scholar 

  15. A.K. Louis, P. Maass and A. Rieder, Wavelet. Theory and Applications, Series in Pure and Applied Mathematics (Wiley, Chichester, England, 1998).

    Google Scholar 

  16. Y. Maday, V. Perrier and J.C. Ravel, Adaptivité dinamique sur bases d'ondelettes pour l'approximation d'équations aux derivées partielles, C. R. Acad. Sci. Paris Sér. I 312 (1991) 405–410.

    Google Scholar 

  17. F. Pitolli, Refinement masks of Hurwitz type in the cardinal interpolation problem, Rend. Mat. Appl. (Ser. 7) 18 (1998) 549–563.

    Google Scholar 

  18. S. Qian and J. Weiss, Wavelets and numerical solution of partial differential equations, J. Comput. Phys. 106 (1993) 155–175.

    Google Scholar 

  19. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations (Springer-Verlag, Berlin, 1994).

    Google Scholar 

  20. I.J. Schoenberg, Cardinal Spline Interpolation, SIAM Monograph, Vol. 12 (SIAM, Philadelphia, PA, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gori, L., Pitolli, F. & Pezza, L. On the Galerkin Method Based on a Particular Class of Scaling Functions. Numerical Algorithms 28, 187–198 (2001). https://doi.org/10.1023/A:1014000418814

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014000418814

Navigation