Skip to main content
Log in

Lagrangian bounds in multiextremal polynomial and discrete optimization problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Many polynomial and discrete optimization problems can be reduced to multiextremal quadratic type models of nonlinear programming. For solving these problems one may use Lagrangian bounds in combination with branch and bound techniques. The Lagrangian bounds may be improved for some important examples by adding in a model the so-called superfluous quadratic constraints which modify Lagrangian bounds. Problems of finding Lagrangian bounds as a rule can be reduced to minimization of nonsmooth convex functions and may be successively solved by modern methods of nondifferentiable optimization. This approach is illustrated by examples of solving polynomial-type problems and some discrete optimization problems on graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh, F. (1995), Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM Journal on Optimization 5, 13–51.

    Google Scholar 

  2. Anjos, M.F. and Wolkowicz, H. A strengthened SDP relaxation via second lifting for the maxcut problem, University ofWaterloo, Department of Combinatorics and Optimization, Research Report CORR 99-55, 28 pp.

  3. Barahona, F., Grötshel, M. and Mahjoub, A. (1985), Facets of the bipartite subgraph polytope Mathematics of Operations Research10, 340–358.

    Google Scholar 

  4. Barahona, F. and Mahjoub, A. (1986), On the cut polytope. Mathematics Programming, 36, 157–173.

    Google Scholar 

  5. Berge, C. (1961), Farbung von Graphen, deren samtiche bzv. deren ungerade Kreise starr sind (Zusammenfassung), Wissenschaftliche Zeitschrift, Martin Luther Universitat Halle-Wittenberg, Mathematisch-Naturwissenschaftliche Reihe, pp. 114–115.

  6. Berge, C. (1962), Sur une conjecture relative au probleme des codes optimaux, Communication, 13eme assemblee generake de l'URSI, Tokyo.

  7. Bertsekas, D.P. (1995), Nonlinear Programming, Athena Scientific, Belmont, Massachusetts, P. 646.

  8. Cox, S.J. (1992), The shape of the ideal column, Mathematical Intelligencer 14, 16–31.

    Google Scholar 

  9. Cullum, J. Donath, W.E. and Wolfe, P. (1975), The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices, Mathematical Programming Study 3, 35–55.

    Google Scholar 

  10. Delorme, C. and Poljak, S. (1993), Laplacian eigenvalues and the maximum cut problem, Math. Programming 62(3), 557–574.

    Google Scholar 

  11. Demyanov, V.F. and Rubinov, A.M. (1980), On quasidifferentiable functionals, Soviet Mathematics Doklady 21, 14–17

    Google Scholar 

  12. Dikin, I.I. and Zorkaltsev, V.I. (1980), Iterative solving of mathematical programming problem (interior point method: algoritms), Nauka, Moscow, (in Russian).

    Google Scholar 

  13. Donath, W.E. and Hoffman, A.J. (1972), Algorithm for partitioning graphs and computer logic based on eigenvectors of connection matrices, Math. Prog. Study 3, 35–55.

    Google Scholar 

  14. Donath, W.E. and Hoffman, A.J. (1973), Lower bounds for the partitioning of graphs, IBM J. Res. Dev. 17.

  15. Frieze, A. and Jerum, M. 1995, Improved approximation algorithms for max k-cut and max bisection, Reprint, Carnegi Mellon University, pp. 1-17.

  16. Goemans, M.X. 1997, Semidefinite programming in combinatorial optimization, Math. Programming 79, 143–162.

    Google Scholar 

  17. Fan, K. (1949), On a theorem of Weyl concerning the eigenvalues of linear transformations, Proceedings of the National Academy of the Sciences of U.S.A.35, 652–655.

    Google Scholar 

  18. Goemans, M.X. and Williamson, D.P. (1994), 0.878-Approximation algorithms forMAX-CUT and MAX 2SAT, Proceedings of the 26th Annual ACM Symposium on Theory of Computing, 422–431.

  19. Grötshel, M. and Pulleyblank, W. (1981), Weakly bipartite graphs and the max-cut problem. Operations Research letters1, 23–27.

    Google Scholar 

  20. Grötschel, M., Lóvasz, L. and Schrijver, A. (1988), Geometric Algotithms and Combinatorial Optimization, Vol. 2 Combinatorics. Springer, Berlin.

    Google Scholar 

  21. Hilbert, D., Ñber die Darstellung definiter Formen als Summen von Formen quadraten. Math. Ann. Leipzig, 1888, Bd. 22, pp. 342–350.

  22. Lawrent, M., Poljak, S. and Rendl, F. (1997), Connections between the semidefinite relaxations of the max-cut and stable set problems, Math. Programming 77, 225–246.

    Google Scholar 

  23. Lewis, A.S. and Overton, M.L. (1996), Eigenvalue Optimization, Acta Numerica 5, 149–190.

    Google Scholar 

  24. Lóvasz, L. (1979), On the Shannon-capacity of graph. IEEE Transactions on information theory. IT-25 1, 1–7.

    Google Scholar 

  25. Lóvasz, L. (1972), Normal hypergraphs and the perfect graph conjecture, DiscreteMathematics 2, 253–267.

    Google Scholar 

  26. McElice, R., Rodemich, E. and Romsey, Jr. H. (1978), The Lovash bound and some generalization. Journal of combinatorics, Information and System Science. 3(3), 134–152.

    Google Scholar 

  27. Narasimhan, G. and Manber, R. (1990), A generalization of Lovasz's sandwich theorem, Polyhedral combinatorics: Proced. of a DIMACS Workshop AMS.

  28. Nemirovsky, A. and Yudin, D.B. (1983), Problem Complexity and Methods Efficiency in Optimization, J. Wiley, New York.

    Google Scholar 

  29. Nesterov, Yu. and Nemirovskii, A. (1994), Interior point polynomial algorithm in convex programming, SIAM, p. 406.

  30. Shannon, C. (1956), The zero-error capacity of a noisy channel. IRe Transactions Information Theory. IT 2, 8-19.

    Google Scholar 

  31. Shrijver, A. (1979), A comparison of the Delsarte and Lovash bounds. IEEE Transactions on Information Theory. IT-25, 4.

    Google Scholar 

  32. Shor, N.Z. (1970), Methods of non-differentiable optimization and its applications. Ph.D. Thesis,Institute of Cybernetics of NASU, Kiev, Ukraine.

    Google Scholar 

  33. Shor, N.Z. (1998), Nondifferentiable Optimization and Polynomial Problems, Kluwer, Dordrecht.

    Google Scholar 

  34. Shor, N.Z. and Berezovski, O.A. (1995). New algorithms for solving weight max-cut problem, Kibernetika i sistemny analiz2, 100–106.

    Google Scholar 

  35. Shor, N.Z. Stetsenko, S.I. (1989), Quadratic extremal problems and nondifferentiable optimization, Naukova dumka, Kiev, (in Russian).

    Google Scholar 

  36. Shor, N.Z. and Stetsyuk, P.I. (1997), Using of r-algorithm modifications for obtaining of global minimum of polynomial functions, Kibernetika i sistemny analiz 4, Kiev.

  37. Yannakakis, M. (1978), Node and edge deletion NP-complete problems. Proc. 10th Ann. ACM Symp. on Theory of Computing. New York, pp. 253–264.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shor, N.Z., Stetsyuk, P.I. Lagrangian bounds in multiextremal polynomial and discrete optimization problems. Journal of Global Optimization 23, 1–41 (2002). https://doi.org/10.1023/A:1014004625997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014004625997

Navigation