Skip to main content
Log in

Approximating the Approximant: A Numerical Code for Polynomial Compression of Discrete Integral Operators

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The action of various one-dimensional integral operators, discretized by a suitable quadrature method, can be compressed and accelerated by means of Chebyshev series approximation. Our approach has a different conception with respect to other well-known fast methods: its effectiveness rests on the “smoothing effect” of integration, and it works in linear as well as nonlinear instances, with both smooth and nonsmooth kernels. We describe a Matlab toolbox which implements Chebyshev-like compression of discrete integral operators, and we present several numerical tests, where the basic O(n 2) complexity is shown to be reduced to O(mn), with mn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Alpert, G. Beylkin, R. Coifman and V. Rokhlin, Wavelet-like bases for the fast solution of secondkind integral equations, SIAM J. Sci. Comput. 14 (1993) 159–184.

    Google Scholar 

  2. K.E. Atkinson, A survey of numerical methods for solving nonlinear integral equations, J. Integral Equations Appl. 4 (1992) 15–46.

    Google Scholar 

  3. K.E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge Monographs on Applied and Computational Mathematics, Vol. 4 (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  4. L. Bos and S. De Marchi, Fekete points for bivariate polynomials restricted to y = x m, East J. Approx. 6 (2000) 189–200.

    Google Scholar 

  5. L. Bos, M.A. Taylor and B.A. Wingate, Tensor product Gauss-Lobatto points are Fekete points for the cube, Math. Comp. 70 (2001) 1543–1547.

    Google Scholar 

  6. A. Brandt and C.H. Venner, Multilevel evaluation of integral transforms with asymptotically smooth kernels, SIAM J. Sci. Comput. 19 (1998) 468–492.

    Google Scholar 

  7. W. Dahmen, Wavelet and multiscale methods for operator equations, Acta Numer. 6 (1997) 55–228.

    Google Scholar 

  8. S.A. Goreinov, E.E. Tyrtyshnikov and A.Yu. Yeremin, Matrix-free iterative solution strategies for large dense linear systems, Numer. Linear Algebra Appl. 4 (1997) 273–294.

    Google Scholar 

  9. L. Greengard, Fast algorithms for classical physics, Science 265 (1994) 909–914.

    Google Scholar 

  10. L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (1987) 325–348.

    Google Scholar 

  11. L. Greengard and V. Rokhlin, A new version of the fast multipole method for the Laplace equation in three dimensions, Acta Numer. 6 (1997) 229–269.

    Google Scholar 

  12. L. Greengard and J. Strain, The fast Gauss transform, SIAM J. Sci. Stat. Comput. 12 (1991) 79–94.

    Google Scholar 

  13. L. Greengard and X. Sun, A new version of the fast Gauss transform, in: Proceedings of the International Congress of Mathematicians, Berlin, 1998, Vol. III, Doc. Math. 1998, Extra Vol. III, pp. 575–584.

    Google Scholar 

  14. W. Hackbusch, Integral Equations: Theory and Numerical Treatment, International Series of Numerical Mathematics, Vol. 120 (Birkhäuser, Basel, 1995).

    Google Scholar 

  15. W. Hackbusch, A sparse matrix arithmetic based on 115–1-matrices. I. Introduction to 115–2-matrices, Computing 62 (1999) 89–108.

  16. W. Hackbusch and B.N. Khoromskij, A sparse 115–3-matrix arithmetic. II. Application to multidimensional problems, Computing 64 (2000) 21–47.

    Google Scholar 

  17. W. Hackbusch and B.N. Khoromskij, Towards 115–4-matrix approximation of the linear complexity, in: Operator Theory: Advances and Applications, Vol. 121 (Birkhäuser, 2001) pp. 194–220.

  18. W. Hackbusch and Z. Nowak, On the fast matrix multiplication in the boundary element method by panel clustering, Numer. Math. 54 (1989) 463–491.

    Google Scholar 

  19. C.T. Kelley and J.I. Northrup, A pointwise quasi-Newton method for integral equations, SIAM J. Numer. Anal. 25 (1988) 1138–1155.

    Google Scholar 

  20. S.R. Lustig, S. Rastogi and N. Wagner, Telescoping fast multipole methods using Chebyshev economization, J. Comput. Phys. 122 (1995) 317–322.

    Google Scholar 

  21. G. Monegato and L. Scuderi, Weighted Sobolev-type spaces and numerical methods for 1D integral equations, invited talk in: 4th International Conference on Functional Analysis and Approximation Theory, Acquafredda di Maratea, PZ, Italy (September 2000).

  22. D.A. Murio, The Mollification Method and the Numerical Solution of Ill-Posed Problems (Wiley, New York, 1993).

    Google Scholar 

  23. R. Piessens, Computing integral transforms and solving integral equations using Chebyshev polynomial approximations, in: Numerical Analysis in the 20th Century, Vol. I, Approximation Theory, J. Comput. Appl. Math. 121 (2000) 113–124.

    Google Scholar 

  24. T.J. Rivlin, An Introduction to the Approximation of Functions (Dover, New York, 1981).

    Google Scholar 

  25. T.J. Rivlin, Chebyshev Polynomials (Wiley, New York, 1990).

    Google Scholar 

  26. V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comput. Phys. 60 (1985) 187–207.

    Google Scholar 

  27. A. Sommariva, A fast Nyström-Broyden solver by Chebyshev compression, in preparation.

  28. A. Sommariva and M. Vianello, Computing positive fixed-points of decreasing Hammerstein operators by relaxed iterations, J. Integral Equations Appl. 12 (2000) 95–112.

    Google Scholar 

  29. M.A. Taylor, B.A. Wingate and R.E. Vincent, An algorithm for computing Fekete points in the triangle, SIAM J. Numer. Anal. 38 (2000) 1707–1720.

    Google Scholar 

  30. M. Vianello, Chebyshev-like compression of linear and nonlinear discretized integral operators, Neural, Parallel and Sci. Comput. 8 (2000) 327–353.

    Google Scholar 

  31. T. von Petersdorff, C. Schwab and R. Schneider, Multiwavelets for second-kind integral equations, SIAM J. Numer. Anal. 34 (1997) 2212–2227.

    Google Scholar 

  32. S. Zhan and D.A. Murio, Surface fitting and numerical gradient computations by discrete mollification, Comput. Math. Appl. 37 (1999) 85–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Marchi, S., Vianello, M. Approximating the Approximant: A Numerical Code for Polynomial Compression of Discrete Integral Operators. Numerical Algorithms 28, 101–116 (2001). https://doi.org/10.1023/A:1014030412645

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014030412645

Navigation