Skip to main content
Log in

A Posteriori Error Estimators of Gradient Recovery Type for Elliptic Obstacle Problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a posteriori error estimates of gradient recovery type for elliptic obstacle problems. The a posteriori error estimates provide both lower and upper error bounds. It is shown to be equivalent to the discretization error in an energy type norm for general meshes. Furthermore, when the solution is smooth and the mesh is uniform, it is shown to be asymptotically exact. Some numerical results which demonstrate the theoretical results are also reported in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis (Wiley-Interscience, New York, 2000).

    Google Scholar 

  2. M. Ainsworth, J.T. Oden and C.Y. Lee, Local a posteriori error estimators for variational inequalities, Numer. Methods PDE 9 (1993) 22–33.

    Google Scholar 

  3. I. Babuška and A.D. Miller, A feedback finite element method with a posteriori error estimation. Part 1, Comput. Methods Appl. Mech. Engrg. 61 (1987) 1–40.

    Google Scholar 

  4. I. Babuška, T. Strouboulis and C.S. Upadhyay, A model study of the quality of a posteriori error estimators for finite element solutions of linear elliptic problems with particular reference to the behavior near the boundary, Internat. J. Numer. Methods Engrg. 40(14) (1997) 2521–2577.

    Google Scholar 

  5. I. Babuška, O.C. Zienkiewicz, J. Gago and E.R. de A. Oliveira (eds.), Accuracy Estimates and Adaptive Refinements in Finite Element Computations (Wiley, New York, 1986).

    Google Scholar 

  6. R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985) 283–301.

    Google Scholar 

  7. T. Blacker and T. Belychko, Superconvergent patch recovery with equilibrium and conjoint interplant enhancernents, Int. J. Numer. Methods Engrg. 37 (1994) 517–536.

    Google Scholar 

  8. F. Brezzi, W.W. Hager and P.A. Raviart, Error estimates for the finite element solution of variational inequalities I, Numer. Math. 28 (1997) 431–443.

    Google Scholar 

  9. C. Carstensen, Quasi-interpolation and a posteriori analysis in finite element methods, RAIRO Math. Model. Num. 33 (1999) 1187–1202.

    Google Scholar 

  10. C. Carstensen and R. Verfürth, Edge residual dominate a posteriori error estimates for low order finite element methods, SIAM J. Numer. Anal. 36 (1999) 1571–1587.

    Google Scholar 

  11. C. Chen and Y. Huang, High Accuracy Theory of Finite Element Methods (Hunan Science Press, 1995) (in Chinese).

  12. Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems, Numer. Math. 84 (2000) 527–548.

    Google Scholar 

  13. P.G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978).

    Google Scholar 

  14. P. Clément, Approximation by finite element functions using local regularization, RAIRO Anal. Numér. 9 (1975) 77–84.

    Google Scholar 

  15. R.S. Falk, Error estimates for the approximation of a class of variational inequalities, Math. Comp. 28 (1974) 963–971.

    Google Scholar 

  16. A. Friedman, Variational Principles and Free-Boundary Problems (Academic Press, New York, 1982).

    Google Scholar 

  17. R. Glowinski, J.L. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities (North-Holland, The Netherlands, 1976).

    Google Scholar 

  18. C. Johnson, Adaptive finite element methods for the obstacle problem, Math. Models Methods Appl. Sci. 2 (1992) 483–487.

    Google Scholar 

  19. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications (Academic Press, New York, 1980).

    Google Scholar 

  20. R. Kornhuber, A posteriori error estimates for elliptic variational inequalities, Comput. Math. Appl. 31 (1996) 49–60.

    Google Scholar 

  21. M. Krizék, P. Neitaanmaki and R. Stenberg (eds.), Finite Element Methods: Superconvergence, Postprocessing, and A Posteriori Estimates, Lecture Notes in Pure and Applied Mathematics, Vol. 196 (Marcel Dekker, New York, 1998).

    Google Scholar 

  22. B. Li and Z. Zhang, Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements, Numer. Methods PDE 15 (1997) 151–167.

    Google Scholar 

  23. Q. Lin and N. Yan, Construction and Analysis of High Efficient Finite Element (Hebei University Press, 1996) (in Chinese).

  24. Q. Lin and A. Zhou, Notes on superconvergence and its related topics, J. Comput. Math. 11 (1993) 211–214.

    Google Scholar 

  25. W. Liu, H. Ma and T. Tang, Mixed error estimates for elliptic obstacle problems, Adv. Comput. Math. (to appear).

  26. W. Liu and N. Yan, A posteriori error estimates for a class of variational inequalities, J. Sci. Comput. 35 (2000) 361–393.

    Google Scholar 

  27. R.H. Nochetto, A note on the approximation of free boundaries by finite element methods, RAIRO Model. Math. Anal. Numer. 20 (1986) 355–368.

    Google Scholar 

  28. L.A. Oganesyan and L.A. Rukhovetz, Study of the rate of convergence of variational difference scheme for second order elliptic equation in two-dimensional field with a smooth boundary, USSR Comput. Math. Math. Phys. 9 (1969) 158–183.

    Google Scholar 

  29. R. Rodrigues, Some remark on Zienkiewicz-Zhu estimator, Int. J. Numer. Methods PDE 10 (1994) 625–635.

    Google Scholar 

  30. L.R. Scott and S. Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. Comput. 54 (1992) 483–493.

    Google Scholar 

  31. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques (Wiley-Teubner, 1996).

  32. M.F. Wheeler and J.R. Whiteman, Superconvergence recovery of gradients on subdomains from piecewise linear finite element approximations, Numer. Methods PDE 3 (1987) 65–82.

    Google Scholar 

  33. N. Yan and A. Zhou, Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes, Comput. Methods Appl. Mech. Engrg. 190 (2001) 4289–4299.

    Google Scholar 

  34. Z. Zhang and H.D. Victory, Jr., Mathematical analysis of Zienkiewicz-Zhu's derivative patch recovery technique for quadrilateral finite elements, Numer. Methods PDE 12 (1996) 507–524.

    Google Scholar 

  35. Z. Zhang and J.Z. Zhu, Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method (I), Comput. Methods Appl. Mech. Engrg. 123 (1995) 173–187.

    Google Scholar 

  36. J.Z. Zhu, A posteriori error estimation-the relationship between different procedures, Comput.Methods Appl. Mech. Engrg. 150 (1997) 411–422.

    Google Scholar 

  37. Q. Zhu and Q. Lin, Superconvergence Theory of the Finite Element Method (Hunan Science Press, Hunan, China, 1989) (in Chinese).

    Google Scholar 

  38. O.C. Zienkiewicz and J.Z. Zhu, The supercovergent patch recovery and a posteriori error estimates, Internat. J. Numer. Methods Engrg. 33 (1992) 1331–1382.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, N. A Posteriori Error Estimators of Gradient Recovery Type for Elliptic Obstacle Problems. Advances in Computational Mathematics 15, 333–361 (2001). https://doi.org/10.1023/A:1014284306804

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014284306804

Navigation