Skip to main content
Log in

An Intrinsic Homotopy Theory for Simplicial Complexes, with Applications to Image Analysis

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

A simplicial complex is a set equipped with a down-closed family of distinguished finite subsets. This structure, usually viewed as codifying a triangulated space, is used here directly, to describe ‘spaces’ whose geometric realisation can be misleading. An intrinsic homotopy theory, not based on such realisation but agreeing with it, is introduced.

The applications developed here are aimed at image analysis in metric spaces and have connections with digital topology and mathematical morphology. A metric space X has a structure t ε X of simplicial complex at each resolution ε>0; the resulting homotopy group π n ε(X) detects those singularities which can be captured by an n-dimensional grid, with edges bound by ε this works equally well for continuous or discrete regions of Euclidean spaces. Its computation is based on direct, intrinsic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Herrlich, H. and Strecker, G.: Abstract and Concrete Categories, Wiley Interscience Publ., New York, 1990.

    Google Scholar 

  2. Bak, A.: Global actions: the algebraic counterpart of a topological space, Uspekhi Mat. Nauk 52(5) (1997), 71–112. Russian Math. Surveys 52(5) (l997), 955-996.

    Google Scholar 

  3. Bak, A.: Topological methods in algebra. In: S. Caenepeel and A. Verschoren (eds), Rings, Hopf Algebras and Brauer Groups, Lecture Notes Pure Appl. Math. 197, M. Dekker, New York, 1998, pp. 43–54.

    Google Scholar 

  4. Borceux, F.: Handbook of Categorical Algebra, Vols. 1-3, Cambridge Univ. Press, Cambridge, 1994.

    Google Scholar 

  5. Brown, R.: Topology, Ellis Horwood, Chichester, 1988.

    Google Scholar 

  6. Cordier, J. M. and Porter, T.: Shape Theory, Ellis Horwood, Chichester, 1989.

    Google Scholar 

  7. Deheuvels, R.: Topologie d'une fonctionelle, Ann. Math. 61 (1955), 13–72.

    Google Scholar 

  8. Eilenberg, S. and Kelly, G. M.: Closed categories, In: Proceedings of the Conference on Categorical Algebra, La Jolla 1965, Springer, 1966, pp. 421-562.

  9. Frosini, P. and Mulazzani, M.: Size homotopy groups for computation of natural size distances, Bull. Belg. Math. Soc. Simon Stevin 6 (1999), 455–464.

    Google Scholar 

  10. Grandis, M.: Cubical monads and their symmetries. In: Proceedings of the Eleventh International Conference on Topology, Trieste 1993, Rend. Ist. Mat. Univ. Trieste 25 (1993), 223–262.

    Google Scholar 

  11. Grandis, M.: Homotopical algebra in homotopical categories, Appl. Categ. Structures 2 (1994), 351–406.

    Google Scholar 

  12. Grandis, M.: Cubical homotopical algebra and cochain algebras, Ann. Mat. Pura Appl. 170 (1996), 147–186.

    Google Scholar 

  13. Grandis, M.: Categorically algebraic foundations for homotopical algebra, Appl. Categ. Structures 5 (1997), 363–413.

    Google Scholar 

  14. Grandis, M.: On the homotopy structure of strongly homotopy associative algebras, J. Pure Appl. Algebra 134 (1999), 15–81.

    Google Scholar 

  15. Hardie, K. A. and Vermeulen, J. J. C.: Homotopy theory of finite and locally finite T0 spaces, Expo. Math. 11 (1993), 331–341.

    Google Scholar 

  16. Heijmans, H. J. A. M.: Mathematical morphology: a modern approach in image processing based on algebra and geometry, SIAM Rev. 37 (1995), 1–36.

    Google Scholar 

  17. Hilton, P. J. and Wylie, S.: Homology Theory, Cambridge Univ. Press, Cambridge, 1962.

    Google Scholar 

  18. Kan, D. M.: Abstract homotopy II, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 255–258.

    Google Scholar 

  19. Kelly, G. M.: Basic Concepts of Enriched Category Theory, Cambridge Univ. Press, Cambridge, 1982.

    Google Scholar 

  20. Kong, T. Y., Kopperman, R. and Meyer, P. R.: A topological approach to digital topology, Amer. Math. Monthly 98 (1991), 901–917.

    Google Scholar 

  21. Kong, T. Y., Kopperman, R. and Meyer, P. R. (eds): Special issue on digital topology, Topol.Appl. 46(3) (1992), 173–303.

    Google Scholar 

  22. Mac Lane, S.: Categories for the Working Mathematician, Springer, Berlin, 1971.

    Google Scholar 

  23. Mardeši´c, S. and Segal, J.: Shape Theory, North-Holland, Amsterdam, 1982.

    Google Scholar 

  24. McCord, M. C.: Singular homology groups and homotopy groups of finite topological spaces, Duke Math. J.33 (1966), 465–474.

    Google Scholar 

  25. Milnor, J. W.: Morse Theory, Princeton Univ. Press, Princeton, 1963.

    Google Scholar 

  26. Nel, L. D.: Introduction to Categorical Methods, Parts 1-2, Carleton-Ottawa Lecture Note Series, Ottawa, 1991.

    Google Scholar 

  27. Puppe, D.: Homotopiemengen und ihre induzierten Abbildungen, I, Math. Z. 69 (1958), 299–344.

    Google Scholar 

  28. Spanier, E. H.: Algebraic Topology, McGraw-Hill, New York, 1966.

    Google Scholar 

  29. Street, R.: Categorical structures, In: Handbook of Algebra, Vol. 1, North-Holland, Amsterdam,1996, pp. 529–577.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandis, M. An Intrinsic Homotopy Theory for Simplicial Complexes, with Applications to Image Analysis. Applied Categorical Structures 10, 99–155 (2002). https://doi.org/10.1023/A:1014326730784

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014326730784

Navigation