Skip to main content

Advertisement

Log in

A genetic algorithm for structure-based de novo design

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Genetic algorithms have properties which make them attractive in de novo drug design. Like other de novo design programs, genetic algorithms require a method to reduce the enormous search space of possible compounds. Most often this is done using information from known ligands. We have developed the ADAPT program, a genetic algorithm which uses molecular interactions evaluated with docking calculations as a fitness function to reduce the search space. ADAPT does not require information about known ligands. The program takes an initial set of compounds and iteratively builds new compounds based on the fitness scores of the previous set of compounds. We describe the particulars of the ADAPT algorithm and its application to three well-studied target systems. We also show that the strategies of enhanced local sampling and re-introducing diversity to the compound population during the design cycle provide better results than conventional genetic algorithm protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walters, P.W., Stahl, M. and Murcko, M.A., Drug Des. Today, 3 (1998) 160.

    Google Scholar 

  2. Goodford, P.J., Med. Chem., 28 (1985) 849.

    Google Scholar 

  3. Miranker, A. and Karplus, M., Proteins, 11 (1991) 29.

    Google Scholar 

  4. Eisen, M.B., Wiley, D.C., Karplus, M. and Hubbard, R.E., Proteins, 19 (1994) 199.

    Google Scholar 

  5. Miranker, A. and Karplus, M., Proteins, 23 (1995) 472.

    Google Scholar 

  6. Pearlman, D.A. and Murcko, M.A., J. Med. Chem., 39 (1996) 1651.

    Google Scholar 

  7. Bohm, H.-J., J. Comput. Aid. Mol. Des., 6 (1992) 61.

    Google Scholar 

  8. Lauri, G. and Bartlett, P., J. Comput. Aid. Mol. Des., 8 (1994) 51.

    Google Scholar 

  9. Roe, D.C. and Kuntz, I.D., J. Comput. Aid. Mol. Des., 9 (1995) 269.

    Google Scholar 

  10. Lewis, R.A. and Leach, A.R., J. Comput. Aid. Mol. Des., 8 (1994) 467.

    Google Scholar 

  11. DeWitte, R. and Shakhnovich, E., J. Am. Chem. Soc., 118 (1996) 11733.

    Google Scholar 

  12. Bohacek, R.S. and McMartin, C., J. Am. Chem. Soc., 116 (1994) 5560.

    Google Scholar 

  13. Rotstein, S.H. and Murcko, M.A., J. Comput. Aid. Mol. Des., 7 (1993) 23.

    Google Scholar 

  14. Rotstein, S.H. and Murcko, M.A., J. Med. Chem., 36 (1993) 1700.

    Google Scholar 

  15. Moon, J.B. and Howe, W.J., Proteins, 11 (1991) 314.

    Google Scholar 

  16. Joseph-McCarthy, D., Pharmacol. Therapeut., 84 (1999) 179.

    Google Scholar 

  17. Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeny, P., J. Adv. Drug Del. Rev., 23 (1997) 3.

    Google Scholar 

  18. Schneider, G., Lee, M.-L., Stahl, M. and Schneider, P., J. Comput. Aid. Mol. Des., 14 (2000) 487.

    Google Scholar 

  19. Westhead, D.R., Clark, D.E., Frenkel, D., Li, J., Murray, C.W., Robson, B. and Waszkowycz, B., J. Comput. Aid. Mol. Des., 9 (1995) 139.

    Google Scholar 

  20. Glen, R.C. and Payne, A.W.R., J. Comput. Aid. Mol. Des., 9 (1995) 181.

    Google Scholar 

  21. Douguet, D., Thoreau, E. and Grassy, G., J. Comput. Aid. Mol. Des., 14 (2000) 449.

    Google Scholar 

  22. Devillers, J., J. Chem. Inf. Comput. Sci., 36 (1996) 1061.

    Google Scholar 

  23. Weber, L., Wallbaum, S., Broger, C. and Gubernator, K., Angew. Chem. Int. Ed. Engl., 34 (1995) 2280.

    Google Scholar 

  24. Blaney, J.M., Dixon, J.S. and Weininger, D., in Weininger, D. (Ed.), Molecular Graphics Society Meeting on Binding Sites: Characterising and Satisfying Steric and Chemical Restraints, York, U.K., 1993.

    Google Scholar 

  25. Sheridan, R.P. and Kearsley, S.K., J. Chem. Inf. Comput. Sci., 35 (1995) 310.

    Google Scholar 

  26. Sheridan, R.P., San Feliciano, S.G. and Kearsley, S.K., J. Mol. Graph. Model., 18 (2000) 320.

    Google Scholar 

  27. Holland, J.H., Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, 1975.

    Google Scholar 

  28. Holland, J.H., Adaptation in Natural and Artificial Systems, 2nd ed., MIT Press, Cambridge, MA, 1992.

    Google Scholar 

  29. Darwin, C., The Origin of Species. Dent Gordon, London, 1973.

    Google Scholar 

  30. Weininger, D.J., Chem. Inf. Comput. Sci., 30 (1990) 237.

    Google Scholar 

  31. Daylight Toolkit, v. 4.6, Daylight Chemical Information Systems. Inc., Santa Fe, NM, USA.

  32. Ewing, T.J. A. and Kuntz, I.D., J. Comp. Chem., 18 (1997) 1175.

    Google Scholar 

  33. CONCORD, Tripos, Inc., St. Louis, MO.

  34. SYBYL, v6.5, Tripos, Inc., St. Louis, MO.

  35. Kick, E.K., Roe, D.C., Skillman, G.A., Liu, G., Ewing, T.J.A., Sun, Y., Kuntz, I.D. and Ellman, J.A., Chem. Biol., 4 (1997) 297.

    Google Scholar 

  36. Queener, S.F., Bartlett, M.S., Jay, M.A., Durkin, M.M. and Smith, J.W. Antimicrobiol. Agents Chemother., 31 (1987) 1323.

    Google Scholar 

  37. Bertino, J.R., J. Clin. Pharmacol., 30 (1990) 291.

    Google Scholar 

  38. Blaney, J.M., Hansch, C., Silipo, C. and Vittoria, A., Chem. Rev., 84 (1984) 333.

    Google Scholar 

  39. Verkhivker, G.M., Rejto, P.A., Bouzida, D., Arthurs, S., Colson, A.B., Freer, S.T., Gehlhaar, D.K., Larson, V., Luty, B.A., Marrone, T. and Rose, P., J. Mol. Recog., 12 (1999) 371.

    Google Scholar 

  40. De Clerq, E., Antiviral Res., 38 (1998) 153.

    Google Scholar 

  41. Ding, J., Das, K., Moereels, H., Koymans, L., Andries, K., Janssen, P.A., Hughes, P.A. and Arnold, E., Nat. Struct. Biol., 2 (1995) 407.

    Google Scholar 

  42. Ferrin, T.E., Huang, C.C., Jarvis, L.E. and Langridge, R., J. Mol. Graph., 6 (1988) 13.

    Google Scholar 

  43. Artico, M., Il Farmaco, 51 (1996) 305.

    Google Scholar 

  44. Goldberg, D.E., in Schaffer, J.D. (Ed.), Third International Conference on Genetic Algorithms. Morgan Kaufmann, Fairfax, VA, 1989, pp. 70.

    Google Scholar 

  45. Grefenstette, J., J. IEEE Transactions Systems, Man, and Cybernetics, 16 (1986) 122.

    Google Scholar 

  46. Schaffer, J.D., Caruana, R.A., Eshelman, L.J. and Das, R., in Schaffer, J.D. (Ed.), Third International Conference on Genetic Algorithms. Morgan Kaufmann, Fairfax, VA, 1989, pp. 51.

    Google Scholar 

  47. Caflisch, A. and Karplus, M., Persp. Drug Disc. Design, 3 (1995) 51.

    Google Scholar 

  48. Zou, X. Q., Sun, Y. and Kuntz, I.D., J. Am. Chem. Soc., 121 (1999) 8033.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pegg, S.CH., Haresco, J.J. & Kuntz, I.D. A genetic algorithm for structure-based de novo design. J Comput Aided Mol Des 15, 911–933 (2001). https://doi.org/10.1023/A:1014389729000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014389729000

Navigation