Skip to main content

Advertisement

Model-Based Video Classification toward Hierarchical Representation, Indexing and Access

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we develop a content-based video classification approach to support semantic categorization, high-dimensional indexing and multi-level access. Our contributions are in four points: (a) We first present a hierarchical video database model that captures the structures and semantics of video contents in databases. One advantage of this hierarchical video database model is that it can provide a framework for automatic mapping from high-level concepts to low-level representative features. (b) We second propose a set of useful techniques for exploiting the basic units (e.g., shots or objects) to access the videos in database. (c) We third suggest a learning-based semantic classification technique to exploit the structures and semantics of video contents in database. (d) We further develop a cluster-based indexing structure to both speed-up query-by-example and organize databases for supporting more effective browsing. The applications of this proposed multi-level video database representation and indexing structures for MPEG-7 are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Adams and L. Bischof, “Seeded region growing, ” IEEE Trans. on PAMI, Vol. 16, pp. 641-647, 1994.

    Google Scholar 

  2. A. Alatan et al., “Image sequence analysis for emerging interactive multimedia services-The European COST 211 framework, ” IEEE Trans. on CSVT, Vol. 8, pp. 802-813, 1998.

    Google Scholar 

  3. S. Berchtold, D.A. Keim, and H.P. Kriegel, “The X-tree: An index structure for high-dimensional data, ” in Proc. of VLDB'96, Bombay, India, 1996, pp. 28-39.

  4. S.F. Chang, W. Chen, H.J. Meng, H. Sundaram, and D. Zhong, “A fully automatic content-based video search engine supporting spatiotemporal queries, ” IEEE Trans. on CSVT, Vol. 8, pp. 602-615, 1998.

    Google Scholar 

  5. J.-Y. Chen, C. Taskiran, A. Albiol, E.J. Delp, and C.A. Bouman, “ViBE: A compressed video database structured for active browsing and search, ” in Proc. SPIE: Multimedia Storage and Archiving Systems IV, Sept. 1999, Boston, Vol. 3846, pp. 148-164.

  6. J.D. Courtney, “Automatic video indexing via object motion analysis, ” Pattern Recognition, Vol. 30, pp. 607-626, 1997.

    Google Scholar 

  7. Y. Deng and B.S. Manjunath, “NeTra-V: Toward an object-based video representation, ” IEEE Trans. on CSVT, Vol. 8, pp. 616-627, 1998.

    Google Scholar 

  8. C. Faloutsos, W. Equitz, M. Flickner, W. Niblack, D. Petkovic, and R. Barber, “Efficient and effective querying by image content, ” Journal of Intelligent Information Systems, Vol. 3, pp. 231-262, 1994.

    Google Scholar 

  9. J. Fan, M.S. Hacid, X. Zhang, and A.K. Elmagarmid, “Semantic video object extraction towards contentbased indexing, ” in IASTED Int. Conf. on Internet and Multimedia Systems and Application, Las Vegas, Nov. 19-23, 2000, pp. 430-435.

  10. J. Fan, D.K.Y. Yau, W.G. Aref, and A. Rezgui, “Adaptive motion-compensated video coding scheme towards content-based bit rate allocation, ” Journal of Electronic Imaging, Vol. 9, No. 4, pp. 521-533, 2000.

    Google Scholar 

  11. J. Fan et al., “Spatiotemporal segmentation for compact video representation, ” Signal Processing: Image Communication, Vol. 16, pp. 553-566, 2001.

    Google Scholar 

  12. B. Furht, S.W. Smoliar, and H.J. Zhang, Video and Image Processing in Multimedia Systems, Kluwer Academic Publisher, Norwell, MA, 1995.

    Google Scholar 

  13. B. Gunsel, A.M. Ferman, and A.M. Tekalp, “Temporal video segmentation using unsupervised clustering and semantic object tracking, ” J. Electronic Imaging, Vol. 7, pp. 592-604, 1998.

    Google Scholar 

  14. A. Guttman, “R-trees: A dynamic index structure for spatial searching, ” in ACM SIGMOD'84, 1984, pp. 47-57.

  15. A. Humrapur, A. Gupta, B. Horowitz, C.F. Shu, C. Fuller, J. Bach, M. Gorkani, and R. Jain, “Virage video engine, ” in SPIE Proc. Storage and Retrieval for Image and Video Databases V, San Jose, CA, Feb. 1997, pp. 188-197.

  16. Y. Ishikawa, R. Subramanya, and C. Faloutsos, “Mindreader: Querying databases through multiple examples, ” in Proc. of VLDB'98, 1998.

  17. A.K. Jain, A. Vailaya, and X. Wei, “Query by video clip, ” ACM Multimedia Systems, Vol. 7, pp. 369-384, 1999.

    Google Scholar 

  18. K.V.R. Kanth, D. Agrawal, and A. Singh, “Dimensionality reduction for similarity searching in dynamic databases, ” in ACM SIGMOD, 1998, pp. 166-176.

  19. N. Katayama and S. Satoh, “The SR-tree: An index structure for high dimensional nearest neighbor queries, ” in ACM SIGMOD, 1997.

  20. A. Pentland, R.W. Picard, and S. Sclaroff, “Photobook: Content-based manipulation of image databases, ” Int. J. Computer Vision, Vol. 18, pp. 233-254, 1996.

    Google Scholar 

  21. Y. Rui and T.S. Huang, “A novel relevance feedback technique in image retrieval, ” in Proc. ACM Multimedia' 99, 1999, pp. 67-70.

  22. Y. Rui, T.S. Huang, and S. Mehrotra, “Constructing table-of-content for videos, ” Multimedia Systems, Vol. 7, pp. 359-368, 1999.

    Google Scholar 

  23. Y. Rui, T.S. Huang, M. Ortega, and S. Mehrotra, “Relevance feedback: A power tool for interactive contentbased image retrieval, ” IEEE Trans. on CSVT, Vol. 8, pp. 644-655, 1998.

    Google Scholar 

  24. S. Satoh and T. Kanade, “Name-It: Association of face and name in video, ” in Proc. of Computer Vision and Pattern Recognition, 1997.

  25. G. Sheikholeslami, W. Chang, and A. Zhang, “Semantic clustering and querying on heterogeneous features for visual data, ” in ACM Multimedia'98, 1998, pp. 3-11.

  26. A. Thomasian, V. Castelli, and C.-S. Li, “Clustering and singular value decomposition for approximate indexing in high dimensional space, ” in CIKM'98, Bethesda, MD, USA, 1998, pp. 201-207.

  27. H.J. Zhang, J. Wu, D. Zhong, and S. Smoliar, “An integrated system for content-based video retrieval and browsing, ” Pattern Recognition, Vol. 30, pp. 643-658, 1997.

    Google Scholar 

  28. D. Zhong, H.J. Zhang, and S.-F. Chang, “Clustering methods for video browsing and annotation, ” in Proc. SPIE, 1996, pp. 239-246.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, J., Zhu, X., Hacid, MS. et al. Model-Based Video Classification toward Hierarchical Representation, Indexing and Access. Multimedia Tools and Applications 17, 97–120 (2002). https://doi.org/10.1023/A:1014635823052

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014635823052