Skip to main content
Log in

Block Krylov Subspace Methods for Solving Large Sylvester Equations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In the present paper, we propose block Krylov subspace methods for solving the Sylvester matrix equation AXXB=C. We first consider the case when A is large and B is of small size. We use block Krylov subspace methods such as the block Arnoldi and the block Lanczos algorithms to compute approximations to the solution of the Sylvester matrix equation. When both matrices are large and the right-hand side matrix is of small rank, we will show how to extract low-rank approximations. We give some theoretical results such as perturbation results and bounds of the norm of the error. Numerical experiments will also be given to show the effectiveness of these block methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Bai, D. Day and Q. Ye, ABLE: An adaptive block Lanczos method for non-Hermitian eigenvalue problems, SIAM J. Matrix Anal. Appl. 20(4) (1999) 1060–1082.

    Google Scholar 

  2. R.H. Bartels and G.W. Stewart, Algorithm 432: Solution of the matrix equation AX+XB= C, Circ. Systems Signal Process. 13 (1994) 820–826.

    Google Scholar 

  3. D.L. Boly, Krylov subspace methods on state-space control models, Comm. ACM 15 (1972) 820–826.

    Google Scholar 

  4. F. Chatelin, Valeurs Propres de Matrices (Masson, Paris, 1988).

    Google Scholar 

  5. B.N. Datta and K. Datta, Theoretical and computational aspects of some linear algebra problems in control theory, in: Computational and Combinatorial Methods in Systems Theory, eds. C.I. Byrnes and A. Lindquist (Elsevier, Amsterdam, 1986) pp. 201–212.

    Google Scholar 

  6. E. de Souza and S.P. Bhattacharyya, Controllability, observability and the solution of AX-XB= C, Linear Algebra Appl. 39 (1981) 167–188.

    Google Scholar 

  7. G.H. Golub, S. Nash and C. Van Loan, A Hessenberg-Schur method for the problem AX+XB= C, IEEE Trans. Automat. Control 24 (1979) 909–913.

    Google Scholar 

  8. J.Z. Hearon, Nonsingular solutions of TA- BT= C, Linear Algebra Appl. 16 (1997) 57–63.

    Google Scholar 

  9. D.Y. Hu and L. Reichel, Krylov subspace methods for the sylvester equation, Linear Algebra Appl. 174 (1992) 283–314.

    Google Scholar 

  10. C. Hyland and D. Bernstein, The optimal projection equations for fixed-order dynamic compensation, IEEE Trans. Automat. Control 29 (1984) 1034–1037.

    Google Scholar 

  11. I.M. Jaimoukha and E.M. Kasenally, Krylov subspace methods for solving large Lyapunov equations, SIAM J. Numer. Anal. 31 (1994) 227–251.

    Google Scholar 

  12. K. Jbilou, On Krylov subspace methods for solving the matrix Sylvester equation AX- XB= C, Technical report LMPA (71), Université du Littoral, Calais, France (1998).

    Google Scholar 

  13. K. Jbilou and J. Riquet, A nonsymmetric block Lanczos algorithm for eigenvalue problems, submitted.

  14. P. Lancaster and M. Tismenetsky, The Theory of Matrices (Academic Press, London, 1985).

    Google Scholar 

  15. J. Laub, M.T. Heath, C. Paige and R.C. Ward, Computation of system balancing transformations and other applications of simultaneous diagonalisation algorithms, IEEE Trans. Automat. Control 32 (1987) 115–122.

    Google Scholar 

  16. C. Moler and C. Van Loan, Ninteen dubious ways to compute the exponential of a matrix, SIAM Rev. 20 (1978) 801–836.

    Google Scholar 

  17. Y. Saad, Iterative Methods for Sparse Linear Systems (PWS, New York, 1995).

    Google Scholar 

  18. Y. Saad, Numerical solution of large Lyapunov equations, in: Signal Processing, Scattering, Operator Theory and Numerical Methods, Proc. of the Internat. Symposium MTNS-89, Vol 3, eds. M.A. Kaashoek, J.H. van Schuppen and A.C. Ran (Birkhäuser, Boston, 1990) pp. 503–511.

    Google Scholar 

  19. Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986) 856–869.

    Google Scholar 

  20. M. Sadkane, Block Arnoldi and Davidson methods for unsymmetric large eigenvalue problems, Numer. Math. 64 (1993) 687–706.

    Google Scholar 

  21. V. Simoncini, On the numerical solution of AX- XB= C,BIT 36(4) (1996) 814–830.

    Google Scholar 

  22. G.W. Stewart, Error and perturbation bounds for subspaces associated with certain eigenvalue problems, SIAM Rev. 15 (1973) 123–136.

    Google Scholar 

  23. G.W. Stewart and J.G. Sun, Matrix Perturbation Theory (Academic Press, New York, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Guennouni, A., Jbilou, K. & Riquet, A. Block Krylov Subspace Methods for Solving Large Sylvester Equations. Numerical Algorithms 29, 75–96 (2002). https://doi.org/10.1023/A:1014807923223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014807923223

Navigation