Skip to main content
Log in

On the Vector ε-Algorithm for Solving Linear Systems of Equations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The four vector extrapolation methods, minimal polynomial extrapolation, reduced rank extrapolation, modified minimal polynomial extrapolation and the topological epsilon algorithm, when applied to linearly generated vector sequences are Krylov subspace methods and it is known that they are equivalent to some well-known conjugate gradient type methods. However, the vector ε-algorithm is an extrapolation method, older than the four extrapolation methods above, and no similar results are known for it. In this paper, a determinantal formula for the vector ε-algorithm is given. Then it is shown that, when applied to a linearly generated vector sequence, the algorithm is also a Krylov subspace method and for a class of matrices the method is equivalent to a preconditioned Lanczos method. A new determinantal formula for the CGS is given, and an algebraic comparison between the vector ε-algorithm for linear systems and CGS is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9 (1951) 17–29.

    Google Scholar 

  2. O. Axelsson, Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations, Linear Algebra Appl. 29 (1980) 1–16.

    Google Scholar 

  3. C. Brezinski, Some results in the theory of the vector e-algorithm, Linear Algebra Appl. 8 (1974) 77–86.

    Google Scholar 

  4. C. Brezinski, Généralisations de la transformation de Shanks, de la table de Padé et de l' e-algorithme, Calcolo 12 (1975) 317–360.

    Google Scholar 

  5. C. Brezinski, Padé-Type Approximation and General Orthogonal Polynomials (Birkhäuser, Basel, 1980).

    Google Scholar 

  6. C. Brezinski and M. Redivo-Zaglia, Treatment of near-breakdown in the CGS algorithms, Numer. Algorithms 7 (1994) 33–73.

    Google Scholar 

  7. C. Brezinski and M. Redivo-Zaglia, Look-ahead in BiCGSTAB and other product-type methods for linear systems, BIT 35 (1995) 169–201.

    Google Scholar 

  8. C. Brezinski and M. Redivo-Zaglia, Extrapolation Methods. Theory and Practice (North-Holland, Amsterdam, 1996).

    Google Scholar 

  9. C. Brezinski and H. Sadok, Avoiding breakdown in the CGS algorithm, Numer. Algorithms 1 (1991) 199–206.

    Google Scholar 

  10. C. Brezinski and H. Sadok, Lanczos-type algorithms for solving systems of linear equations, Appl. Numer. Math. 11 (1993) 443–473.

    Google Scholar 

  11. S. Cabay and L.W. Jackson, A polynomial extrapolation method for finding limits and antilimits of vector sequences, SIAM J. Numer. Anal. 13 (1976) 734–752.

    Google Scholar 

  12. R.P. Eddy, Extrapolating to the limit of a vector sequence, in: Information Linkage between Applied Mathematics and Industry, ed. P.C.C. Wang (Academic Press, New York, 1979) pp. 387–396.

    Google Scholar 

  13. S.C. Eisenstat, H.C. Elman and M.H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal. 20 (1983) 345–357.

    Google Scholar 

  14. W. Gander, G.H. Golub and D. Gruntz, Solving linear equations by extrapolation, in: Supercomputing, Trondheim, 1989, Computer Systems Science, Vol. 62 (Springer, Berlin, 1989) pp. 279–293.

    Google Scholar 

  15. P.R. Graves-Morris, Vector valued rational interpolants I, Numer. Math. 42 (1983) 331–348.

    Google Scholar 

  16. P.R. Graves-Morris, Vector valued rational interpolants II, IMA J. Numer. Anal. 4 (1984) 209–224.

    Google Scholar 

  17. P.R. Graves-Morris, G.A. Baker Jr. and C.F. Woodcock, Cayley's theorem and its application in the theory of vector Padé approximants, J. Comput. Appl. Math. 66 (1996) 255–265.

    Google Scholar 

  18. P.R. Graves-Morris and C.D. Jenkins, Vector-valued, rational interpolants III, Constr. Approx. 2 (1986) 263–289.

    Google Scholar 

  19. C. Lanczos, Solution of systems of linear equations by minimized iteration, J. Res. N.B.S. 49 (1952) 33–53.

    Google Scholar 

  20. J.B. McLeod, A note on the e-algorithm, Computing 7 (1971) 17–24.

    Google Scholar 

  21. M. Mešina, Convergence acceleration for the iterative solution of the equations X= AX+ f, Comput. Methods Appl. Mech. Engrg. 10 (1977) 165–173.

    Google Scholar 

  22. J. Nuttall, Convergence of Padé approximants of meromorphic functions, J. Math. Anal. Appl. 31 (1970) 147–153.

    Google Scholar 

  23. D.E. Roberts, Clifford algebras and vector-valued rational forms I, Proc. Roy. Soc. London A 431 (1990) 285–300.

    Google Scholar 

  24. D.E. Roberts, Clifford algebras and vector-valued rational forms II, Numer. Algorithms 3 (1992) 371–381.

    Google Scholar 

  25. D.E. Roberts, On a q-d algorithm, Adv. Comput. Math. 8 (1998) 193–219.

    Google Scholar 

  26. Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp. 37 (1981) 105–126.

    Google Scholar 

  27. Y. Saad, Iterative Methods for Sparse Linear Systems (PWS, Boston, 1996).

    Google Scholar 

  28. A. Salam, Formal vector orthogonal polynomials, Adv. Comput. Math. 8 (1988) 267–289.

    Google Scholar 

  29. A. Salam, Vector Padé-type approximants and vector Padé approximants, J. Approx. Theory 97 (1999) 92–112.

    Google Scholar 

  30. A. Salam, On vector Hankel determinant, Linear Algebra Appl. 313 (2000) 127–139.

    Google Scholar 

  31. D. Shanks, Non-linear transformations of divergent and slowly convergent sequences, J. Math. Phys. 34 (1955) 1–42.

    Google Scholar 

  32. A. Sidi, Convergence and stability properties of minimal polynomial and reduced rank extrapolation algorithms, SIAM J. Numer. Anal. 23 (1986) 197–209.

    Google Scholar 

  33. A. Sidi, Extrapolation vs. projection methods for linear systems of equations, J. Comput. Appl. Math. 22 (1988) 71–88.

    Google Scholar 

  34. A. Sidi, W.F. Ford and D.A. Smith, Acceleration of convergence of vectors sequences, SIAM J. Numer. Anal. 23 (1986) 178–196.

    Google Scholar 

  35. D.A. Smith, W.F. Ford and A. Sidi, Extrapolation methods for vector sequences, SIAM J. Numer Anal. 23 (1986) 178–196.

    Google Scholar 

  36. P. Sonneveld, CGS, A fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 10 (1989) 35–52.

    Google Scholar 

  37. H.A. Van Der Vorst, BiCGSTAB: A fast and smoothly converging variant of the Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13 (1992) 631–644.

    Google Scholar 

  38. P. Wynn, On a device for computing the e m (S n )transformation, Math. Tables Autom. Comp. 10 (1956) 91–96.

    Google Scholar 

  39. P. Wynn, Acceleration techniques for iterated vector and matrix problems, Math. Comput. 16 (1962) 301–322.

    Google Scholar 

  40. P. Wynn, Vector continued fractions, Linear Algebra Appl. 1 (1968) 357–395.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salam, A., Graves-Morris, P. On the Vector ε-Algorithm for Solving Linear Systems of Equations. Numerical Algorithms 29, 229–247 (2002). https://doi.org/10.1023/A:1014832627766

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014832627766

Navigation