Skip to main content
Log in

Towards Reduced Basis Approaches in ab initio Electronic Structure Computations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Due to the high dimensionality of the spaces where the problems are set, adapted discretization basis are often advocated in complex physical problems (Navier–Stokes equations, solid mecanics, ab initio electronic structure computations) to express the solution in terms of solution of similar (but easier to solve) problems. However, very few mathematical studies have been undertaken to asses the numerical properties of these approximations. Within this context, we will present in this paper an overview of the tools required to develop more rigorous reduced basis approaches for quantum chemistry: a posteriori numerical analysis and fast exponential decay of the n-width of the solution set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kohn, W., and Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133.

    Google Scholar 

  2. Hohenberg, P., and Kohn, W. (1964). Inhomogeneous electron gas. Phys. Rev. 136, B864.

    Google Scholar 

  3. Strain, M. C., Scuseria, G. E., and Frisch, M. J. (1996). Achieving linear scaling for the electronic quantum Coulomb problem. Science 271, 51.

    Google Scholar 

  4. Hehre, W. H., Radom, L., Schleyer, P. v. R., and Pople, J. A. (1986). Ab Initio Molecular Orbital Theory, Wiley, New York.

    Google Scholar 

  5. Parr, R. G., and Yang, W. (1989). Density-Functional Theory of Atoms and Molecules, Oxford Science, Oxford.

    Google Scholar 

  6. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, Jr., J. A., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., S tefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S., and Pople, J. A. (1998). Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh PA.

    Google Scholar 

  7. Cancès, E., and Le Bris, C. (2000). On the convergence of SCF algorithms for the Hartree-Fock equations M2AN. Math. Model. Numer. Anal. 34(4), 749–774.

    Google Scholar 

  8. Szabo, A., and Ostlund, N. S. (1996). Modern Quantum Chemistry, Dover, pp. 410–416.

  9. Pinkus, A. (1985). n-Widths in Approximation Theory, Springer-Verlag, Berlin.

    Google Scholar 

  10. Maday, Y., and Turinici, G. (2001). Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations. Numerische Matematik, in print.

  11. Machiels, L., Maday, Y., Oliveira, I. B., Patera, A. T., and Rovas, D. V. (2000). Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems. C. R. Acad. Sci. Paris Sér. I Math. 331(2), 153–158.

    Google Scholar 

  12. Machiels, L., Maday, Y., and Patera, A. T. (2001). Output bounds for reduced-order approximations of elliptic partial differential equations. Comput. Methods Appl. Mech. Engrg. 190, 3413–3426.

    Google Scholar 

  13. Machiels, L., Peraire, J., and Patera, A. T. (2000). A posteriori finite element output bounds for the incompressible Navier–Stokes equations; application to a natural convection problem. J. Comput. Phys., to appear.

  14. Maday, Y., Patera, A. T., and Peraire, J. (1999). A general formulation for a posteriori bounds for output functionals of partial differential equations; application to the eigenvalue problem. C. R. Acad. Sci. Paris Sér. I Math. 328, 828.

    Google Scholar 

  15. Paraschivoiu, M., and Patera, A. T. (1998). A hierarchical duality approach to bounds for the outputs of partial differential equations. Comput. Methods Appl. Mech. Engrg. 158(3/4), 407.

    Google Scholar 

  16. Patera, A. T. Research Group website, Massachusetts Institute of Technology, http:// augustine.mit.edu/

  17. Barrault, M., Cancès, E., LeBris, C., Maday, Y., and Turinici, G. Reduced basis approaches for the Hartree-Fock equations, work in progress.

  18. Truhlar, D. G. (1998). Basis-set extrapolation. Chem. Phys. Lett. 294(1–3), 45–48.

    Google Scholar 

  19. Chuang, Y.-Y., and Truhlar, D. G. (1999). Geometry optimization with an infinite basis set. J. Phys. Chem. A 103(6), 651–652.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cancès, E., LeBris, C., Maday, Y. et al. Towards Reduced Basis Approaches in ab initio Electronic Structure Computations. Journal of Scientific Computing 17, 461–469 (2002). https://doi.org/10.1023/A:1015150025426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015150025426

Navigation