Skip to main content
Log in

Divergence-Free Wavelet Analysis of Turbulent Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we study the application of divergence-free wavelet bases for the analysis of incompressible turbulent flows and perform several experiments. In particular, we analyze various nominally incompressible fields and study the influence of compressible perturbations due to experimental and computational errors. In addition, we investigate the multiscale structure of modes obtained from the Proper Orthogonal Decomposition (POD) method. Finally, we study the divergence-free wavelet compression of turbulent flow data and present results on the energy recovery. Moreover, we utilize wavelet decompositions to investigate the regularity of turbulent flow fields in certain non-classical function spaces, namely Besov spaces. In our experiments, we have observed significantly higher Besov regularity than Sobolev regularity, which indicates the potential for adaptive numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Barinka, A., Barsch, T., Urban, K., and Vorloeper, J. (2001). The Multilevel Library: Software Tools for Multiscale Methods and Wavelets, Version 2.1, RWTH Aachen, IGPM Preprint 205.

  2. Berkooz, G., Elezgaray, J., and Holmes, P. J. (1992). Coherent structures in random media and wavelets. Physica D 61, 47–58.

    Google Scholar 

  3. Canuto, C., Tabacco, A., and Urban, K. (1999). The wavelet element method I: Construction and analysis. Appl. Comp. Harm. Anal. 6, 1–52.

    Google Scholar 

  4. Cohen, A., and Masson, R. (1999). Wavelet methods for second order elliptic problems-preconditioning and adaptivity. SIAM J. Sci. Comp. 21(3), 1006–1026.

    Google Scholar 

  5. Cohen, A., Dahmen, W., and DeVore, R. A. (2001). Adaptive wavelet methods for elliptic operator equations-convergence rates. Math. Comp. 70, 27–75.

    Google Scholar 

  6. Cohen, A., Daubechies, I., and Feauveau, J.-C. (1992). Biorthogonal bases of compactly supported wavelets. Comm. Pure and Appl. Math. 45, 485–560.

    Google Scholar 

  7. Dahlke, S., Dahmen, W., and Urban, K. (2001). Adaptive Wavelet Methods for Saddle Point Problems-Optimal Convergence Rates, RWTH Aachen, IGPM Report 204.

  8. Dahlke, S., and DeVore, R. A. (1997). Besov regularity for elliptic boundary value problems. Comm. Partial Diff. Eq. 22(1/2), 1–16.

    Google Scholar 

  9. Dahmen, W. (1997). Wavelet and multiscale methods for operator equations. Acta Numerica 6, 55–228.

    Google Scholar 

  10. Dahmen, W., Kunoth, A., and Urban, K. (1999). Biorthogonal spline-wavelets on the interval-stability and moment conditions. Appl. Comp. Harm. Anal. 6, 132–196.

    Google Scholar 

  11. Dahmen, W., and Schneider, R. (1999). Composite wavelet bases for operator equations. Math. Comput. 68, 1533–1567.

    Google Scholar 

  12. Dahmen, W., and Schneider, R. (1999). Wavelets on manifolds I: Construction and domain decomposition. SIAM J. Math. Anal. 31, 184–230.

    Google Scholar 

  13. Dahmen, W., and Stevenson, R. (1999). Element-by-element construction of wavelets satisfying stability and moment conditions. SIAM J. Numer. Anal. 37, 319–325.

    Google Scholar 

  14. DeVore, R. A. (1998). Nonlinear approximation. Acta Numerica 7, 51–150.

    Google Scholar 

  15. DeVore, R. A., and Lucier, B. (1996). On the size and smoothness of solutions to nonlinear hyperbolic conservation laws. SIAM J. Math. Anal. 27, 684–707.

    Google Scholar 

  16. Farge, M. (1992). Wavelet transforms and their applications to turbulence. Ann. Rev. Flu. Mech. 24, 395–457.

    Google Scholar 

  17. Farge, M., Schneider, K., and Kevlahan, N. (1999). Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis. Phys. Flui. 11(8), 2187–2201.

    Google Scholar 

  18. Griebel, M., and Koster, F. (2000). Adaptive wavelet solvers for the unsteady incompressible Navier–Stokes equations. In Malek, J., et al. (eds.), Advances in Mathematical Fluid Mechanics, Springer, pp. 67–118.

  19. Lemarié-Rieusset, P. G. (1992). Analyses multi-résolutions non orthogonales, commutation entre projecteurs et derivation et ondelettes vecteurs à divergence nulle (in french). Rev. Mat. Iberoam. 8, 221–236.

    Google Scholar 

  20. Lewalle, J. (1993). Wavelet transforms of the Navier–Stokes equations and the generalized dimensions of turbulence. Appl. Sci. Res. 51(1/2), 109–113.

    Google Scholar 

  21. Lumley, J. L. (1967). The structure of inhomogeneous turbulence. In Yaglom, A. M., and Tatarski, V. I. (eds.), Atmospheric Turbulence and Wave Propagation, Moscow, Nauka.

    Google Scholar 

  22. Mallat, S. (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Patt. Anal. Mach. Intell. 11, 674–693.

    Google Scholar 

  23. Meneveau, C. (1991). Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech. 232, 469–520.

    Google Scholar 

  24. Urban, K. (1995). On divergence-free wavelets. Adv. Comput. Math. 4, 51–82.

    Google Scholar 

  25. Urban, K. (2001). Wavelet bases in H(div) and H(curl). Math. Comp. 70, 739–766.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albukrek, C.M., Urban, K., Rempfer, D. et al. Divergence-Free Wavelet Analysis of Turbulent Flows. Journal of Scientific Computing 17, 49–66 (2002). https://doi.org/10.1023/A:1015184110888

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015184110888

Navigation