Skip to main content
Log in

Least-Squares Fitting of Algebraic Spline Surfaces

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We present an algorithm for fitting implicitly defined algebraic spline surfaces to given scattered data. By simultaneously approximating points and associated normal vectors, we obtain a method which is computationally simple, as the result is obtained by solving a system of linear equations. In addition, the result is geometrically invariant, as no artificial normalization is introduced. The potential applications of the algorithm include the reconstruction of free-form surfaces in reverse engineering. The paper also addresses the generation of exact error bounds, directly from the coefficients of the implicit representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.L. Bajaj, Publications, www.ticam.utexas.edu/CCV/papers/fhighlights.html.

  2. C.L. Bajaj, I. Ihm and J. Warren, Higher-order interpolation and least-squares approximation using implicit algebraic surfaces, ACM Trans. Graphics 12 (1993) 327-347.

    Google Scholar 

  3. C.L. Bajaj and G. Xu, Spline approximations of real algebraic surfaces, J. Symb. Comput. 23 (1997) 315-333.

    Google Scholar 

  4. F. Bernardini, C.L. Bajaj, J. Chen and D.R. Schikore, Automatic reconstruction of 3D CAD models from digital scans, Internat. J. Comput. Geom. Appl. 9 (1999) 327-370.

    Google Scholar 

  5. W. Boehm and H. Prautzsch, Numerical Methods (AK Peters, Wellesley, MA, and Vieweg, Braunschweig, 1993).

    Google Scholar 

  6. M. Chen, A.E. Kaufman and R. Yagel, eds., Volume Graphics (Springer, London, 2000).

    Google Scholar 

  7. G. Farin, NURB Curves and Surfaces (AK Peters, Wellesley, MA, 1995).

    Google Scholar 

  8. A. Felis, Approximation von Meßpunkten mittels algebraischer Splineflächen, Diplomarbeit (Master thesis), Department of Mathematics, Darmstadt University of Technology (2000).

  9. M.S. Floater and M. Reimers, Meshless parameterization and surface reconstruction, Computer Aided Geom. Design 18 (2001) 77-92.

    Google Scholar 

  10. D. Forsey and R. Bartels, Surface fitting with hierarchical splines, ACM Trans. Graphics 14 (1995) 134-161.

    Google Scholar 

  11. M. Froumentin and C. Chaillou, Quadric surfaces: A survey with new results, in: The Mathematics of Surfaces VII, eds. T. Goodman and R. Martin, Information Geometers (Winchester, 1997) pp. 363-382.

  12. J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design (AK Peters, Wellesley, MA, 1993).

    Google Scholar 

  13. B. Jüttler, Surface fitting using convex tensor-product splines, J. Comput. Appl. Math. 84 (1997) 23-44.

    Google Scholar 

  14. B. Jüttler, Bounding the Hausdorff distance of implicitly defined and/or parametric curves, in: Mathematical Methods in CAGD: Oslo 2000, eds. T. Lyche and L.L. Schumaker (Vanderbilt Univ. Press, Nashville, TN) pp. 223-232.

  15. B. Jüttler, Least-squares fitting of algebraic spline curves via normal vector estimation, in: The Mathematics of Surfaces IX, eds. R. Cipolla and R.R. Martin (Springer, London, 2000) pp. 263-280.

    Google Scholar 

  16. G.D. Koras and P.D. Kaklis, Convexity conditions for parametric tensor-product B-spline surfaces, Adv. Comput. Math. 10 (1999) 291-309.

    Google Scholar 

  17. G. Meurant, Computer Solution of Large Linear Systems (Elsevier, Amsterdam, 1999).

    Google Scholar 

  18. L.A. Piegl and W. Tiller, Parametrization for surface fitting in reverse engineering, Comput.-Aided Design 33 (2001) 593-603.

    Google Scholar 

  19. V. Pratt, Direct least-squares fitting of algebraic surfaces, ACM Comput. Graphics (Siggraph) 21 (1987) 145-152.

    Google Scholar 

  20. F.P. Preparata and M.I. Shamos, Computational Geometry (Springer, New York, 1985).

    Google Scholar 

  21. T.W. Sederberg, Planar piecewise algebraic curves, Comput. Aided Geom. Design 1 (1984) 241-255.

    Google Scholar 

  22. R. Taubin, Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation, IEEE Trans. Pattern Anal. Mach. Intelligence 13 (1991) 1115-1138.

    Google Scholar 

  23. M. Umasuthan and A.M. Wallace, A comparative analysis of algorithms for fitting planar curves and surfaces defined by implicit polynomials, in: Design and Applications of Curves and Surfaces (Mathematics of Surfaces V), ed. R.B. Fisher (Clarendon Press, Oxford, 1994) pp. 495-514.

    Google Scholar 

  24. R.J. Vanderbei, LOQO, http://www.orfe.princeton.edu/¸loqo.

  25. N. Werghi et al., Object reconstruction by incorporating geometric constraints in reverse engineering, Comput.-Aided Design 31 (1999) 363-399.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jüttler, B., Felis, A. Least-Squares Fitting of Algebraic Spline Surfaces. Advances in Computational Mathematics 17, 135–152 (2002). https://doi.org/10.1023/A:1015200504295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015200504295

Navigation