Abstract
Weak factorization systems, important in homotopy theory, are related to injective objects in comma-categories. Our main result is that full functors and topological functors form a weak factorization system in the category of small categories, and that this is not cofibrantly generated. We also present a weak factorization system on the category of posets which is not cofibrantly generated. No such weak factorization systems were known until recently. This answers an open problem posed by M. Hovey.
Similar content being viewed by others
References
Adámek, J., Herrlich, H., Rosický, J., and Tholen, W.: On a generalized small-object argument for the injective subcategory problem, Preprint, May 2000.
Adámek, J., Herrlich, H., and Strecker, G.: Abstract and Concrete Categories, Wiley 1990.
Adámek, J. and Rosický, J.: Locally Presentable and Accessible Categories, Cambridge Univ. Press, 1994.
Banaschewski, B. and Bruns, G.: Categorical characterization of the Mac Neille completion, Archiv Math. 18(1967), 369–377.
Baues, H. J.: Algebraic Homotopy, Cambridge Univ. Press, Cambridge, 1989.
Beke, T.: Sheafifiable homotopy model categories, Math. Proc. Cambridge Philos. Soc. 129 (2000), 447–475.
Borceux, F.: Handbook of Categorical Algebra, Vol. II, Cambridge Univ. Press, 1995.
Bousfield, A. K.: Constructions of factorization systems in categories, J. Pure Appl. Algebra 9 (1977), 207–220.
Brümmer, G. C. L. and Hoffmann, R.-E.: An external characterization of topological functors, Springer Lecture Notes in Math. 540, 1976, pp. 136–151.
Bruns, G. and Lakser, H.: Injective hulls of semilattices, Canad. Math. Bull. 13 (1970), 115–118.
Eckmann, B. and Kleisli, H.: Algebraic homotopy groups and Frobenius algebras, Illinois J. Math. 6 (1962), 533–552.
Hardie, K. A. and Vermeulen, J. J. C.: A projective homotopy theory for non-additive categories, Rend. Istit. Mat. Univ. Trieste 25 (1993), 263–276.
Herrlich, H.: Initial completions, Math. Z. 150 (1976), 101–110.
Herrlich, H.: Categorical topology 1971-1981, in: J. Novák (ed.), Gener. Topol. and its Rel. to Mod. Analysis and Algebra V, Heldermann, 1983, pp. 279-383.
Herrlich, H. and Strecker, G. E.: Cartesian closed topological hulls as injective hulls, Quaestiones Math. 9 (1986), 263–280.
Hirschhorn, P.: Localization of model categories, Preprint, 1998.
Hoffmann, R.-E.: Die kategorielle Auffassung der Initial - und Finaltopologie, Thesis, Univ. Bochum, 1972.
Hovey, M.: Model Categories, Amer. Math. Soc. Math. Surveys and Monographs 63, 1998.
Hovey, M.: Problems, http://www.math.wesleyan.edu.
Quillen, D.: Homotopical Algebra, Springer Lecture Notes in Math. 43, 1967.
Tholen, W. and Wischnewsky, M. B.: Semi-topological functors II: External characterizations, J. Pure Appl. Algebra 15 (1979), 75–92.
Wolff, H.: On the external characterization of topological functors, Manuscripta Math. 22 (1977), 63–76.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Adámek, J., Herrlich, H., Rosický, J. et al. Weak Factorization Systems and Topological Functors. Applied Categorical Structures 10, 237–249 (2002). https://doi.org/10.1023/A:1015270120061
Issue Date:
DOI: https://doi.org/10.1023/A:1015270120061