Skip to main content
Log in

Order Dimension, Strong Bruhat Order and Lattice Properties for Posets

  • Published:
Order Aims and scope Submit manuscript

Abstract

We determine the order dimension of the strong Bruhat order on finite Coxeter groups of types A, B and H. The order dimension is determined using a generalization of a theorem of Dilworth: dim (P)=width(Irr(P)), whenever P satisfies a simple order-theoretic condition called here the dissective property (or “clivage”). The result for dissective posets follows from an upper bound and lower bound on the dimension of any finite poset. The dissective property is related, via MacNeille completion, to the distributive property of lattices. We show a similar connection between quotients of the strong Bruhat order with respect to parabolic subgroups and lattice quotients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billey, S., Jockusch, W. and Stanley, R. (1993) Some combinatorial properties of Schubert polynomials, J. Algebraic Combin. 2(4), 345–374.

    Google Scholar 

  2. Birkhoff, G. (1973) Lattice Theory, 3rd edn, Amer. Math. Soc. Colloq. Publ. 25, Amer. Math. Soc.

  3. Björner, A. and Brenti, F., Combinatorics of Coxeter Groups, Graduate Texts in Math., Springer-Verlag, to appear.

  4. Björner, A. and Brenti, F. (1996) An improved tableau criterion for Bruhat order, Electron. J. Combin. 3(1), Research Paper 22.

  5. Björner, A. and Wachs, M. (1988) Generalized quotients in Coxeter groups, Trans. Amer. Math. Soc. 308(1), 1–37.

    Google Scholar 

  6. Björner, A. and Wachs, M. (1997) Shellable nonpure complexes and posets. II, Trans. Amer. Math. Soc. 349(10), 3945–3975.

    Google Scholar 

  7. Chajda, I. and Snášel, V. (1998) Congruences in ordered sets, Math. Bohem. 123(1), 95–100.

    Google Scholar 

  8. Deodhar, R. and Srinivasan, M. (2001) A statistic on involutions, J. Algebraic Combin. 13(2), 187–198.

    Google Scholar 

  9. Dilworth, R. (1950) A decomposition theorem for partially ordered sets, Ann. of Math. (2) 51, 161–165.

    Google Scholar 

  10. Elkies, N., Kuperberg, G., Larsen, M. and Propp, J. (1992) Alternating sign matrices and domino tilings (Part I), J. Algebraic Combin. 1(2), 111–132.

    Google Scholar 

  11. Fan, K. (1972) On Dilworth's coding theorem, Math Z. 127, 92–94.

    Google Scholar 

  12. Felsner, S. and Trotter, W. (2000) Dimension, graph and hypergraph coloring, Order 17(2), 167–177.

    Google Scholar 

  13. Flath, S. (1993) The order dimension of multinomial lattices, Order 10(3), 201–219.

    Google Scholar 

  14. Garsia, A. and Stanton, D. (1984) Group actions on Stanley-Reisner rings and invariants of permutation groups, Adv. Math. 51(2), 107–201.

    Google Scholar 

  15. Geck, M., Hiss, G., Lübeck, F., Malle, G. and Pfeiffer, G. (1996) CHEVIE-A system for computing and processing generic character tables for finite groups of Lie type, in Weyl Groups and Hecke Algebras, AAECC 7, pp. 175–210.

  16. Geck, M. and Kim, S. (1997) Bases for the Bruhat-Chevalley order on all finite Coxeter groups, J. Algebra 197(1), 278–310.

    Google Scholar 

  17. Grätzer, G. (1998) General Lattice Theory, 2nd edn, Birkhauser, Boston.

    Google Scholar 

  18. Hoffman, K. and Padberg, M. (2001) Set covering, packing and partitioning problems, in C. A. Floudas and M. Pardalos (eds), Encyclopedia of Optimization, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  19. Humphreys, J. (1990) Reflection Groups and Coxeter Groups, Cambridge Stud. in Adv. Math. 29, Cambridge Univ. Press.

  20. Kung, J., Personal communication.

  21. Lascoux, A. and Schützenberger, M.-P. (1996) Treillis et bases des groupes de Coxeter, Electron. J. Combin. 3, #R27.

    Google Scholar 

  22. MacNeille, H. (1937) Partially ordered sets, Trans. Amer. Math. Soc. 42(3), 416–460.

    Google Scholar 

  23. Markowsky, G. (1992) Primes, irreducibles and extremal lattices, Order 9(3), 265–290.

    Google Scholar 

  24. Okada, S. (1993) Alternating sign matrices and some deformations of Weyl's denominator formulas, J. Algebraic Combin. 2(2), 155–176.

    Google Scholar 

  25. Rabinovitch, I. and Rival, I. (1979) The rank of a distributive lattice, Discrete Math. 25(3), 275–279.

    Google Scholar 

  26. Reading, N. (2002) Lattice and order properties of the poset of regions in a hyperplane arrangement, Preprint.

  27. Reading, N. (2002) On the structure of Bruhat order, Ph.D. dissertation, University of Minnesota.

  28. Robbins, D. (1991) The story of 1, 2, 7, 42, 429, 7436,..., Math. Intelligencer 13(2), 12–19.

    Google Scholar 

  29. Rozen, V. (1991) Coding of ordered sets, Ordered Sets and Lattices 10, 88–96 (Russian).

    Google Scholar 

  30. Schönert, M. et al. (1995) GAP-Groups, Algorithms, and Programming, 5th edn, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany.

    Google Scholar 

  31. Simion, R. (1999) A type-B associahedron, Preprint.

  32. Stanley, R. (1997) Enumerative Combinatorics, Vol. I, Cambridge Stud. in Adv. Math. 49, Cambridge Univ. Press.

  33. Trotter, W. (1992) Combinatorics and Partially Ordered Sets: Dimension Theory, Johns Hopkins Series in the Math. Sci., The Johns Hopkins Univ. Press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reading, N. Order Dimension, Strong Bruhat Order and Lattice Properties for Posets. Order 19, 73–100 (2002). https://doi.org/10.1023/A:1015287106470

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015287106470

Navigation