Skip to main content
Log in

Quasiorders and Sublattices of Distributive Lattices

  • Published:
Order Aims and scope Submit manuscript

Abstract

We study the lattice of all (0,1)-sublattices of a distributive lattice L, using certain compatible quasiorders on the Priestley space of L as our principal tool. Special emphasis is put on the case of finite L, where epic sublattices, Frattini sublattices and covers are considered in some detail. We hope to demonstrate that quasiorders may serve as a concept suitable to unify the many different representations of sublattices of L which are found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abad, M. and Adams, M. E. (1994) The Frattini sublattice of a finite distributive lattice, Algebra Universalis 32, 314–329.

    Google Scholar 

  2. Adams, M. E. (1973) The Frattini sublattice of a distributive lattice, Algebra Universalis 3, 216–228.

    Google Scholar 

  3. Adams, M. E., Dwinger, Ph. and Schmid, J. (1996) Maximal sublattices of finite distributive lattices, Algebra Universalis 36, 488–504.

    Google Scholar 

  4. Balbes, R. and Dwinger, Ph. (1974) Distributive Lattices, Univ. of Missouri Press, Columbia, MO.

    Google Scholar 

  5. Cignoli, R., Lafalce, S. and Petrovich, A. (1991) Remarks on Priestley duality for distributive lattices, Order 8, 299–315.

    Google Scholar 

  6. Erné, M. and Reinhold, J. (1995) Intervals in lattices of quasiorders, Order 12, 375–403.

    Google Scholar 

  7. Erné, M. and Reinhold, J. (1996) Lattices of closed quasiorders, J. Combin. Math. Combin. Comput. 21, 41–64.

    Google Scholar 

  8. Ganter, B. and Wille, R. (1999) Formal Concept Analysis, Springer, New York.

    Google Scholar 

  9. Hashimoto, J. (1952) Ideal theory for lattices, Math. Japon. 2, 149–186.

    Google Scholar 

  10. Kelly, D. and Trotter, W. T. (1982) Dimension theory for ordered sets, in: I. Rival (ed.), Ordered Sets, Reidel Publ. Co., Dordrecht, pp. 171–211.

    Google Scholar 

  11. Lengvárszky, Z. and McNulty, G. (1998) Covering in the lattice of subuniverses of a finite distributive lattice, J. Austral. Math. Soc. (Ser. A) 65, 333–353.

    Google Scholar 

  12. Richmond, T. A. (1998) Quasiorders, principal topologies, and partially ordered partitions, Internat. J. Math. Math. Sci. 21, 221–234.

    Google Scholar 

  13. Rival, I. (1973) Maximal sublattices of finite distributive lattices, Proc. Amer. Math. Soc. 37, 417–420.

    Google Scholar 

  14. Rival, I. (1974) Maximal sublattices of finite distributive lattices, II, Proc. Amer. Math. Soc. 44, 263–268.

    Google Scholar 

  15. Ryter, Ch. and Schmid, J. (1994) Deciding Frattini is NP-complete, Order 11, 257–279.

    Google Scholar 

  16. Schmid, J. (1999) Boolean layer cakes, in: Proceedings ORDAL '96, Theoret. Comput. Sci. 217, pp. 255–278.

  17. Richmond, Th. A. (1998) Quasiorders, principal topologies, and partially ordered partitions, Internat. J. Math. Math. Sci. 21, 221–234.

    Google Scholar 

  18. Trotter, W. T. (1992) Combinatorics and Partially Ordered Sets: Dimension Theory, Johns Hopkins University Press, Baltimore.

    Google Scholar 

  19. Vogt, F. (1996) Bialgebraic contexts for finite distributive lattices, Algebra Universalis 35, 151–165.

    Google Scholar 

  20. Wild, M. (1994) A theory of finite closure spaces based on implications, Adv. in Math. 108, 118–139.

    Google Scholar 

  21. Wille, R. (1975) Note on the order dimension of partially ordered sets, Algebra Universalis 5, 443–444.

    Google Scholar 

  22. Yan, C. H. (1998) Commuting quasi-order relations, Discrete Math. 183, 285–292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, J. Quasiorders and Sublattices of Distributive Lattices. Order 19, 11–34 (2002). https://doi.org/10.1023/A:1015291410777

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015291410777

Navigation