Skip to main content
Log in

The Darwinian Genetic Code: An Adaptation for Adapting?

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

The genetic code is a ubiquitous interface between inert genetic information and living organisms, as such it plays a fundamental role in defining the process of evolution. There have been many attempts to identify features of the code that are themselves adaptations. So far, the strongest evidence for an adaptive code is that the assignments of amino acids (encoded objects) to codons (coding units) appear to be organized so as to minimize the change in amino acid hydrophobicity that results from random mutations. One possibility not previously discussed is that this feature of the code may in fact represent an adaptation to maximize the efficiency of adaptive evolution, particularly given the maximized connectedness of protein fitness landscapes afforded by the redundancy of the code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Aita, S. Urata, and Y. Husumi, “From amino acid landscape to protein landscape: analysis of genetic codes in terms of fitness landscape,” J. Mol. Evol., vol. 50, pp. 313–323, 2000.

    Google Scholar 

  2. A. Antillon and I. Ortega-Blake, “A group theory analysis of the ambiguities in the genetic code: on the existence of a generalized genetic code,” J. Theor. Biol., vol. 112, pp. 757–769, 1985.

    Google Scholar 

  3. D. H. Ardell, “On error minimization in a sequential origin of the standard genetic code,” J. Mol. </del>Evol., vol. 47, pp. 1–13, 1998.

    Article  Google Scholar 

  4. W. Banzhaf, “Genotype-phenotype mapping and neutral variations–a case study in Genetic Programming,” in Parallel Problem Solving from Nature III, Y. Davidor, H.-P. Schwefel, and R. Männer (eds.), Springer: Berlin, 1994, pp. 322–332.

    Google Scholar 

  5. J. D. Bashford, I. Tsohantjis, and P. D. Jarvis, “Asupersymmetric model for the evolution of the genetic code,” Proc. Natl. Acad. Sci. USA 95, pp. 987–992, 1998.

    Article  Google Scholar 

  6. C. Burch and L. Chao, “Evolution by small steps and rugged landscapes in the RNAvirus phi6,” Genetics, 151, 1999.

  7. D. W. Coit and A. E. Smith, “Solving the redundancy allocation problem using a combined neural network/genetic algorithm approach,” Computers and Operations Research, vol. 23, pp. 515–526, 1996.

    Article  MATH  Google Scholar 

  8. F. H. C. Crick, “The structure of the nucleic acids and their role in protein synthesis,” Biochem. Soc. Symp., vol. 14, pp. 25–26, 1957.

    Google Scholar 

  9. F. H. C. Crick, J. S. Griffith, and L. E. Orgel, “Codes without commas,” Proc. Natl. Acad. Sci. USA 43, pp. 416–421, 1957.

    Article  MathSciNet  Google Scholar 

  10. F. H. C. Crick, “Codon-anticodon pairing: The wobble hypothesis,” J. Mol. Biol., vol. 19, pp. 548–555, 1966.

    Google Scholar 

  11. F. H. C. Crick, “The origin of the genetic code,” J. Mol. Biol., vol. 38, pp. 367–379, 1968.

    Article  Google Scholar 

  12. G. Cullman and J. Labouygues, “Noise immunity of the genetic code,” Biosystems, vol. 16, pp. 9–29, 1983.

    Article  Google Scholar 

  13. D. Dasgupta, “Incorporating redundancy and gene activation mechanisms in genetic search for adapting to non-stationary environments,” in Practical Handbook of Genetic Algorithms, L. Chambers (ed.), CRC Press, 1995, chap. 13, pp. 303–316.

  14. M. DiGiulio, “The extension reached by the minimization of the polarity distances during the evolution of the genetic code,” J. Mol. Evol., vol. 29, pp. 288–293, 1989.

    Article  Google Scholar 

  15. M. DiGiulio, M. R. Copabianco, and M. Medugno, “On the optimization of the physiochemical distances between amino acids in the evolution of the genetic code,” J. Theor. Biol., vol. 168, pp. 141–144, 1994.

    Article  Google Scholar 

  16. M. DiGiulio, “Genetic code origin and the strength of natural selection,” J. Theor. Biol., vol. 208, pp. 141–144, 2000.

    Article  Google Scholar 

  17. M. DiGiulio, “The origins of the genetic code cannot be studied using measurements based on the PAM matrix because this matrix reflects the code itself, making any such analyses tautologous,” J. Theor. Biol., vol. 208, pp. 141–144, 2001.

    Article  Google Scholar 

  18. C. J. Epstein, “Role of the amino acid ‘code’ and of selection for conformation in the evolution of proteins,” Nature, vol. 210, pp. 25–28, 1966.

    Article  Google Scholar 

  19. R. A. Fisher, A Genetical Theory of Natural Selection, Clarendon Press: Oxford, 1930.

    Google Scholar 

  20. W. Fitch, “The relation between frequencies of amino acids and ordered trinucleotides,” J. Mol. Biol., vol. 16, pp. 1–8, 1966.

    Article  Google Scholar 

  21. S. J. Freeland and L. D. Hurst, “The genetic code is one in a million,” J. Mol. Evol., vol. 47, pp. 238–248, 1998.

    Article  Google Scholar 

  22. S. J. Freeland, R. D. Knight, L. F. Landweber, and L. D. Hurst, “Early fixation of an optimal genetic code,” Mol. Biol. Evol., vol. 17, pp. 511–518, 2000.

    Google Scholar 

  23. S. J. Freeland, R. D. Knight, and L. F. Landweber, “Measuring adaptation within the genetic code,” Trends Biochem. Sci., vol. 25, pp. 44–45, 2000.

    Article  Google Scholar 

  24. A. L. Goldberg and R. E. Wittes, “Genetic code: Aspects of organization,” Science, vol. 153, pp. 420–424, 1966.

    Google Scholar 

  25. N. Goldman, “Further results on error minimization within the genetic code,” J. Mol. Evol., vol. 37, pp. 662–664, 1993.

    Google Scholar 

  26. D. Haig and L. D. Hurst, “Aquantitative measure of error minimization in the genetic code,” J. Mol. Evol., vol. 33, pp. 412–417, 1991.

    Article  Google Scholar 

  27. D. Haig and L. D. Hurst, “Aquantitative measure of error minimisation within the genetic code” (Erratum), J. Mol. Evol., vol. 49, p. 708, 1999.

    Google Scholar 

  28. B. Hayes, “The Invention of the Genetic Code,” American Scientist, vol. 86, pp. 8–14, 1998.

    Article  Google Scholar 

  29. J. E. Hornos and Y. M. Hornos, “Algebraic model for the evolution of the genetic code,” Physical Review Letters, vol. 71, pp. 4401–4404, 1993.

    Article  Google Scholar 

  30. M. Huynen, P. Stadler, and W. Fontana, “Smoothness within ruggedness: The role of neutrality in adaptation,” Proc. Natl. Acad. Sci. USA 93, pp. 397–401, 1996.

    Article  Google Scholar 

  31. O. P. Judson and D. Haydon, “The genetic code: what is it good for?” J. Mol. Evol., vol. 49, pp. 539–550, 1999.

    Article  Google Scholar 

  32. H. Kargupta, in Genetic Algorithms in Engineering and Computer Science, C. Poloni, D. Quagliarella, J. Periaux, and G. Winter (eds.), John Wiley and Sons Ltd: New York, pp. 59–83, 1997.

    Google Scholar 

  33. H. Kargupta, “Astriking property of genetic code-like transformations,” Complex Systems, vol. 13, pp. 1–32, 2001.

    MathSciNet  Google Scholar 

  34. S. A. Kauffman, The Origins of Order–Self-Organization and Selection in Evolution, Oxford University Press: New York, 1993.

    Google Scholar 

  35. J. L. King and T. H. Jukes, “Non-Darwinian evolution,” Science, vol. 164, pp. 788–798, 1969.

    Google Scholar 

  36. R. D. Knight, S. J. Freeland, and L. F. Landweber, “Asimple model based on mutation and selection explains compositional trends within and across genomes,” Genome Biology, vol. 2, research0010.1-0010.13, 2001.

  37. R. D. Knight, “Rewiring the keyboard: Evolvability of the genetic code,” Nat. Rev. Genet., vol. 2, pp. 49–58, 2001.

    Article  Google Scholar 

  38. J. Konecny, M. Schöniger, I. L. Hofacker, M.-D. Weitze, and G. L. Hofacker, “Concurrent neutral evolution of mRNAsecondary structures and encoded proteins,” J. Mol. Evol., vol. 50, pp. 238–242, 2000.

    Google Scholar 

  39. J. Kyte and R. F. Doolittle, “Asimple method displaying the hydropathic character of a protein,” J. Mol. Biol., vol. 157, pp. 105–132, 1982.

    Article  Google Scholar 

  40. V. S. R. Majety, S. Venkatasubramanian, and A. E. Smith, in Proceedings of the Fifth International Industrial Engineering Research Conference, pp. 459–463, 1996.

  41. A. M. Raich and J. Ghaboussi, in GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, W. Banzhaf (ed.), pp. 1691–1698, 1999.

  42. P. Schuster, Theoretical and Computational Methods in Genome Research, S. Suhai (ed.), Plenum Press: New York, pp. 287–302, 1997.

    Google Scholar 

  43. T. M. Sonneborn, in Evolving Genes and Proteins, V. Bryson and H. J. Vogel (eds.), Academic Press: New York, 1965.

    Google Scholar 

  44. M. A. Soto and C. J. Toha, “A hardware interpretation of the evolution of the genetic code,” Biosystems, vol. 18, pp. 209–215, 1985.

    Article  Google Scholar 

  45. R. Swanson, “Aunifying concept for the amino acid code,” Bull. Math. Bio., vol. 46, pp. 187–203, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  46. E. Szathmary, “Codon swapping as a possible evolutionary mechanism,” J. Mol. Evol., vol. 32, pp. 178–182, 1991.

    Google Scholar 

  47. E. Szathmary and E. Zintzaras, “Astatistical test of hypotheses on the organization and origin of the genetic code,” J. Mol. Evol., vol. 35, pp. 185–189, 1992.

    Google Scholar 

  48. M. V. Volkenstein, “Coding of polar and non-polar amino acids,” Nature, vol. 207, pp. 294–295, 1965.

    Article  Google Scholar 

  49. C. R. Woese, “Order in the genetic code,” Proc. Natl. Acad. Sci. USA 54, pp. 71–75, 1965.

    Article  Google Scholar 

  50. C. R. Woese, “On the evolution of the genetic code,” Proc. Natl. Acad. Sci. USA 54, pp. 71–75, 1965.

    Article  Google Scholar 

  51. C. R. Woese, The Genetic Code: The Molecular Basis for Genetic Expression, Harper and Row: New York, 1967.

    Google Scholar 

  52. J. T.-F. Wong, “Role of minimization of chemical distances between amino acids in the evolution of the genetic code,” Proc. Natl. Acad. Sci. USA 77, pp. 1083–1086, 1980.

    Article  Google Scholar 

  53. E. Zuckerkandl and L. Pauling, Evolving Genes and Proteins, V. Bryson and H. J. Vogel (eds.), Academic Press: New York, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeland, S.J. The Darwinian Genetic Code: An Adaptation for Adapting?. Genet Program Evolvable Mach 3, 113–127 (2002). https://doi.org/10.1023/A:1015527808424

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015527808424

Navigation