Skip to main content
Log in

Identifying potential binding modes and explaining partitioning behavior using flexible alignments and multidimensional scaling

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A method is described for the rapid and automatic analysis of flexible molecular alignments using multidimensional scaling and a normalized scoring scheme. A projection scheme was devised to separate orientational and conformational effects. It is shown that the approach can be utilized for the identification of common binding orientations or to the study of differences in partioning behavior. It is suggested that the method can be employed as a novel approach exploring molecular similarity as a dynamic property, so that it includes aspects of motion (by way of mutual orientations), conformations and molecular properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feher, M. and Schmidt, J., J. Chem. Inf. Comput. Sci., 41 (2001) 346.

    Google Scholar 

  2. Lemmen, C. and Lengauer, T., J. Comput. Aid. Mol. Des., 14 (2000) 215.

    Google Scholar 

  3. Feher, M. and Schmidt, J., J. Chem. Inf. Comput. Sci., 40 (2000) 495.

    Google Scholar 

  4. Labute, P., Williams, C., Feher, M., Sourial, E. and Schmidt, J., J. Med. Chem., 44 (2001) 1483.

    Google Scholar 

  5. Krzanowski, W.J., Principles of Multivariate Analysis, Clarendon Press, Oxford, 1988.

    Google Scholar 

  6. Klebe, G., Mietzner, R. and Weber, F., J. Comput. Aid. Mol. Des., 8 (1994) 751.

    Google Scholar 

  7. Molecular Operating Environment, Version 2000.02, Chemical Computing Group Inc., Montreal, Quebec, Canada.

  8. Halgren, T.A., J. Comp. Chem., 17 (1996) 490.

    Google Scholar 

  9. Still, W.C., Tempczyk, A., Hawley, R.C. and Hendrickson, T., J. Am. Chem. Soc., 112 (1990) 6127.

    Google Scholar 

  10. Qiu, D., Shenkin, P.S., Hollinger, F.P. and Still, W.C., J. Phys. Chem. A., 101 (1997) 3005.

    Google Scholar 

  11. Ferguson, D.M. and Raber, D.J., J. Am. Chem. Soc., 111 (1989) 4371.

    Google Scholar 

  12. ACD logD suite, version 4.56, Advanced Chemistry Development Inc., Toronto, ON, Canada.

  13. NAG Statistical Add-Ins for Excel, Release 1.1, The Numerical Algorithm Group Ltd., Oxford, UK, 1999.

  14. Girvan, R. and Grant, F., Scie. Comp. World 52 (2000) 31.

    Google Scholar 

  15. McCullough, B.D. and Wilson, B., Comp. Stat. Dat. Anal. 31 (1999) 27.

    Google Scholar 

  16. Testa, B., Carrupt, P.-A., Gaillard, P. and Billois, F., Pharm. Res, 13 (1996) 335.

    Google Scholar 

  17. Böhm, H.-J., Klebe, G. and Kubinyi, H., Wirkstoffdesign, Spektrum Verlag, 1996, pp. 345-346.

  18. Böhm, H.-J., Klebe, G. and Kubinyi, H., Wirkstoffdesign, Spektrum Verlag, 1996, pp. 327-330.

  19. Badger, J., Minor, I., Kremer, M.J., Oliveira, M.A., Smith, T.J., Griffith, J.P., Guerin, D.M.A., Krishnaswamy, S., Luo, M., Rossmann, M.G., McKinlay, M.A., Diana, G.T.D., Dutko, F.J. Fancher, M., Rueckert, R.R. and Heinz, B.A., Proc. Natl. Acad. Sci. USA, 85 (1988) 3304.

    Google Scholar 

  20. Böhm, H.-J. and Klebe, G., Angew. Chem. Int. Ed. Engl., 35 (1996) 2588.

    Google Scholar 

  21. Brzozowski, A.M., Pike, A.C., Dauter, Z., Hubbard, R.E., Bonn, T., Engstrom, O., Ohman, L., Greene, G.L., Gustafsson, J.A. and Carlquist, M., Nature, 389 (1997) 753.

    Google Scholar 

  22. Wurtz, J.-M., Egner, U., Heinrich, N., Moras, D. and Mueller-Fahrnow, A., J. Med. Chem. 41 (1998) 1803.

    Google Scholar 

  23. Arevalo, J.H., Hassig, C.A., Stura, E.A., Sims, M.J., Taussig, M.J. and Wilson, I.A., J. Mol. Biol., 241 (1994) 663.

    Google Scholar 

  24. Walliman, P., Marti, T., Fürer, A. and Diederich, F., Chem. Rev., 97 (1997) 1567.

    Google Scholar 

  25. Zhorov, B.S. and Lin, S.X., Proteins, 38 (2000) 414.

    Google Scholar 

  26. Schmidt, J., Mercure, J., Feher, M., Dunn-Dufault, R., Peter, M. and Redden P., De Novo Design i Synthesis and Evaluation of Novel Non-Steroidal High Affinity Ligands for the Estrogen Receptor, to be published.

  27. N'Goka, V., Schlewer, G., Linget, J.-M., Chambon, J.-P. and Wermuth, C.-G., J. Med. Chem. 34 (1991) 2547.

    Google Scholar 

  28. Carrupt, P.A., Gaillard, P., Billois, F., Weber, P., Testa, B., Meyer, C. and Perez, S., The Molecular Lipophilicity Potential: A New Tool for log P Calculations and Docking, and in Comparative Molecular Field Analysis, in Lipophilicity in Drug Action and Toxicology, VCH, Weinheim, 1996, pp. 195-217.

    Google Scholar 

  29. Carrupt, P.A., Testa, B., Bechalany, A., Tayar, N.E., Descas, P. and Perrissoud, D., J. Med. Chem. 34 (1991) 1272.

    Google Scholar 

  30. Avdeef, A., Assessment of Distribution-pH Profiles, in Lipophilicity in Drug Action and Toxicology, VCH, Weinheim, 1996, pp. 109-139.

    Google Scholar 

  31. Gaillard, P., Carrupt, P.A. and Testa, B., Bioorg. Med. Chem. Lett. 4 (1994) 737.

    Google Scholar 

  32. Kubinyi, H., Persp. Drug Disc. Des. 9/10/11 (1998) 225.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feher, M., Schmidt, J.M. Identifying potential binding modes and explaining partitioning behavior using flexible alignments and multidimensional scaling. J Comput Aided Mol Des 15, 1065–1083 (2001). https://doi.org/10.1023/A:1015941316283

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015941316283

Navigation