Skip to main content
Log in

Composite Macroscopic and Microscopic Diversity of Sectorized Macrocellular and Microcellular Mobile Radio Systems Employing RAKE Receiver over Nakagami Fading Plus Lognormal Shadowing Channel

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents a generalized model of binary phase shift keying (BPSK) direct sequence code division multiple access (DS/CDMA) macrocellular and microcellular sectorized mobile radio systems over Nakagami fading plus lognormal shadowing channels. RAKE receiver, perfect and imperfect sectorization, voice activity monitoring, microscopic and composite microscopic plus macroscopic diversity are considered. The interrelationships among the number of interfering cells, sectorization degree, sectorization imperfection, voice activity factor, fading parameter, microscopic diversity degree, microscopic plus macroscopic diversity degree and the number of users are considered. Numerical results show that voice activity monitoring and sectorization can reduce multiple access interference (MAI). Furthermore, composite microscopic plus macroscopic diversity system can counteract the fast and slow fading components simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J.C. Bultitude and G.K. Bedal, “Propagation Characteristics on Microcellular Urban Mobile Radio Channels at 910 MHz”, IEEE Select Area Commun., Vol. 7, No. 1, pp. 31–39, 1989.

    Google Scholar 

  2. P. Harely, “Short Distance Attenuation Measurements at 900 MHz and 1.8 GHz Using Low Antenna Heights for Microcells”, IEEE J. Select. Area Commun., Vol. 7, pp. 5–10, 1989.

    Google Scholar 

  3. J.G. Proakis, Digital Communications third edn, McGraw-Hill: New York, 1995.

    Google Scholar 

  4. R. Price and P.E. Green Jr., “A Communication Technique for Multipath Channels”, Proc. IRE, Vol. 46, pp. 555–570, 1958.

    Google Scholar 

  5. W. Lee Mobile Communication Engineering, McGraw-Hill: New York, 1982.

    Google Scholar 

  6. A. Annamalai, “Microdiversity Reception of Spread-Spectrum Signals on Nakagami Fading Channels”, IEEE Trans. Commun., Vol. 47, No. 11, pp. 1747–1756, 1999.

    Google Scholar 

  7. R. Berhardt, “Macroscopic Diversity in Frequency Reuse Radio Systems”, IEEE J. Select. Areas Commun., Vol. SAC-5, pp. 862–870, 1987.

    Google Scholar 

  8. A.A. Dayya and N.C. Beaulieu, “Analysis of Equal Gain Diversity on Nakagami Fading Channels”, IEEE Trans. Commun., Vol. 39, No. 2, pp. 225–234, 1991.

    Google Scholar 

  9. A.A. Dayya and N.C. Beaulieu, “Outage Probabilities of Cellular Mobile Radio Systems with Multiple Nakagami Interferers”, IEEE Trans. Veh. Technol., Vol. 40, No. 4, pp. 757–768, 1991.

    Google Scholar 

  10. A.M.D. Turkmani, “Performance Evaluation of a Composite Microscopic Plus Macroscopic Diversity System”, IEEE Proceedings I, Vol. 138, No. 1, pp. 15–20, 1991.

    Google Scholar 

  11. A.A. Dayya and N.C. Beaulieu, “Outage Probabilities of Diversity Cellular Systems with Cochannel Interference in Nakagami Fading”, IEEE Trans. Veh. Technol., Vol. 41, No. 4, pp. 343–355, 1992.

    Google Scholar 

  12. Yu Dong Yao and A.U.H. Sheikh, “Investigation into Cochannel Interference in Microcellular Mobile Radio Systems”, IEEE Trans. Veh. Technol., Vol. 41, No. 2, pp. 114–123, 1992.

    Google Scholar 

  13. R. Prasad and A. Kegel, “Effects of Rician Faded and Log-normal Shadowed Signals on Spectrum Efficiency in Microcellular Radio”, IEEE Trans. Veh. Technol., Vol. 42, No. 3, pp. 274–281, 1993.

    Google Scholar 

  14. C.A.F.J. Wijffels, H.S. Misser and R. Prasad, “A Microcellular CDMA over Slow and Fast Rician Fading Radio Channels with Forward Error Correcting Coding and Diversity”, IEEE Trans. Veh. Technol., Vol. 42, No. 4, pp. 570–580, 1993.

    Google Scholar 

  15. A.A. Dayya and N.C. Beaulieu, “Micro-and Macrodiversity NCFSK (DPSK) on Shadowed Nakagami-Fading Channel”, IEEE Trans. Commun., Vol. 42, No. 9, pp. 2693–2702, 1994.

    Google Scholar 

  16. A.A. Dayya and N.C. Beaulieu, “Outage Probabilities in Presence of Correlated Lognormal Interferers”, IEEE Trans. Veh. Technol., Vol. 43, No. 1, pp. 164–173, 1994.

    Google Scholar 

  17. M.G. Jansen and R. Prasad, “Capacity, Throughput and Delay Analysis of a Cellular DS/CDMA System with Imperfect Power Control and Imperfect Sectorization”, IEEE Trans. Veh. Technol., Vol. 44, No. 1, pp. 67–74, 1995.

    Google Scholar 

  18. P.I. Dallas and F.N. Pavlidou, “Macrodiversity Analysis of an M-ary Noncoherent Orthogonal DS/CDMA System on Shadowed Rayleigh Channel”, International Journal of Wireless Information Networks,Vol.3, No. 3, pp. 163–172, 1996.

    Google Scholar 

  19. J. Mar, H.Y. Chen, “Performance Analysis of Cellular CDMA Networks over Frequency Selective Fading Channel”, IEEE Trans. Veh. Technol., Vol. 47, No. 4, pp. 1234–1244, 1998.

    Google Scholar 

  20. J.C. Lin, W.C. Kao, Y.T. Su and T.H. Lee, “Outage and Coverage Considerations for Microcellular Mobile Radio Systems in Shadowed Rician/Shadowed-Nakagami Environment”, IEEE Trans. Veh. Technol., Vol. 48, No. 1, pp. 66–75, 1999.

    Google Scholar 

  21. A. Sathyendran, K.W. Sowerby and M. Shafi, “A Statistical Approach to the Analysis of DS/CDMA Cellular Systems Employing RAKE Receivers and Sectorized Antennas”, IEEE Trans. Veh. Technol., Vol. 48, No. 1, pp. 8–19, 1999.

    Google Scholar 

  22. E.K. Al-Hussaini, I.M. Sayed and E.M. Saad, “Selection and MRC Diversity for a DS/CDMA Cellular System through Nakagami Fading Channel”, Wireless Personal Communications, Vol. 16, No. 2, pp. 115–133, 2001.

    Google Scholar 

  23. K.S. Gilhousen, I.M. Jacobs, R. Padovani, A.J. Viterbi, L.A. Weaver and C.E. Wheatley III, “On the Capacity of a Cellular CDMA System”, IEEE Trans. Veh. Technol., Vol. 40, No. 2, pp. 303–312, 1991.

    Google Scholar 

  24. R. Prasad, CDMA for Wireless Personal Communications, Artech House, Inc.: Boston London, 1996.

    Google Scholar 

  25. M.D. Yacoub, J.E.V. Bautista and L.G. de R. Guedes, “On Higher Order Statistics of the Nakagami-m Distribution”, IEEE Trans. Veh. Technol., Vol. 48, No. 3, pp. 790–794, 1999.

    Google Scholar 

  26. R.L. Pickholtz, L.B. Milstein and D.L. Schilling, “Spread Spectrum for Mobile Communications”, IEEE Trans. Veh. Technol., Vol. 40, No. 2, pp. 313–321, 1991.

    Google Scholar 

  27. L.B. Milstein, T.S. Rappaport and R. Barghouti, “Performance Evaluation for Cellular CDMA”, IEEE J. Select. Areas Commun., Vol. 10, No. 4, pp. 680–689, 1992.

    Google Scholar 

  28. B.R. Vojcic, R.L Pickholtz and L.B. Milstein, “Performance of DS-CDMA with Imperfect Power Control Operating over a Low Earth Orbiting Satellite Link”, IEEE J. Select. Areas Commun., Vol. 12, No. 4, pp. 560–567, 1994.

    Google Scholar 

  29. P. Newson and M.R. Heath, “The Capacity of a Spread Spectrum CDMA System for Cellular Mobile Radio with Consideration of System Imperfections”, IEEE J. Select. Areas Commun., Vol. 12, No. 4, pp. 673–683, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Hussaini, E.K., Al-Bassiouni, A.M., Mourad, H.M. et al. Composite Macroscopic and Microscopic Diversity of Sectorized Macrocellular and Microcellular Mobile Radio Systems Employing RAKE Receiver over Nakagami Fading Plus Lognormal Shadowing Channel. Wireless Personal Communications 21, 309–328 (2002). https://doi.org/10.1023/A:1016076700413

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016076700413

Navigation