Skip to main content
Log in

Molecular docking studies of a group of hydroxamate inhibitors with gelatinase-A by molecular dynamics

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We have performed docking and molecular dynamics simulations of hydroxamates complexed with human gelatinase-A (MMP-2) to gain insight into the structural and energetic preferences of these inhibitors. The study was conducted on a selected set of eleven compounds with variation in structure and activity. Molecular dynamics simulations were performed at 300 K for 100 ps with equilibration for 50 ps. The structural analyses of the trajectories indicate that the coordinate bond interactions, the hydrogen bond interactions, the van der Waals interactions as well as the hydrophobic interactions between ligand and receptor are responsible simultaneously for the preference of inhibition and potency. The ligand hydroxamate group is coordinated to the catalytic zinc ion and form stable hydrogen bonds with the carbonyl oxygen of Gly 162. The P1′ group makes extensive van der Waals and hydrophobic contacts with the nonpolar side chains of several residues in the S1′ subsite, including Leu 197, Val 198, Leu 218 and Tyr 223. Moreover, four to eight hydrogen bonds between hydroxamates and MMP-2 are formed to stabilize the inhibitors in the active site. Compared with the P2′ and P3′ groups, the P1′ groups of inhibitors are oriented regularly, which is produced by the restrain of the S1′ subsite. From the relationship between the length of the nonpolar P1′ group and the biological activity, we confirm that MMP-2 has a pocket-like S1′ subsite, not a channel-like S1′ subsite proposed by Kiyama (Kiyama, R. et al., J. Med. Chem. 42 (1999), 1723). The energetic analyses show that the experimental binding free energies can be well correlated with the interactions between the inhibitors and their environments, which could be used as a simple score function to evaluate the binding affinities for other similar hydroxamates. The validity of the force field parameters and the MD simulations can be fully testified by the satisfactory agreements between the experimental structure-activity relationship and the information from the structural and energetic analyses. The information generated from the predicted complexes should be useful for further work in the area of structure-based design of new compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woessner, J.F., FASBE J., 5 (1991) 2145.

    Google Scholar 

  2. Nagase, H. and Fields, G.B., Biopolymer, 40 (1996) 399.

    Google Scholar 

  3. Bottomley, K.M.K., Bradshaw, D. and Nixon, J.S., Metalloproteinases as Targets for Anti-Inflammatory Drugs.Birkhäuser Verlag, Switzerland, 1999.

    Google Scholar 

  4. Willenbrock F., Murphy G., Am. J. Resp. Crit. Car. Med., 150 (1994) 5165.

    Google Scholar 

  5. Green, J., Wang, M., Liu, Y.E., Raymond, L.A., Rosen, C., Shi, Y.E., J. Biol. Chem., 271 (1996) 30375.

    Google Scholar 

  6. Murphy, G.J.P., Murphy, G., Reynolds, J.J., FEBS Lett., 289 (1991) 4.

    Google Scholar 

  7. Cossins, J., Dudgeon, T.J., Catlin, G., Gearing, A.J.H., Clements, J.M., Biochim. Biophys. Res. Commun., 228 (1996) 494.

    Google Scholar 

  8. Pendás, A.M., Knäuper, V., Puente, X.S., Llano, E., Mattei, M.G., Apte, S., Murphy, G., López-Otín, C., J. Biol. Chem., 272 (1997) 4281.

    Google Scholar 

  9. Birkedal-Hansen, H., Moore, W.G., Bodden, M.K., Windsor, L.J., Birkedal-Hansen, B., DeCarlo, A, Engler, J.A., Crit. Rev. Oral. Biol. Med., 4 (1993) 197.

    Google Scholar 

  10. Coussens, L.M., Werb, Z., Chem. Biol., 3 (1996) 895.

    Google Scholar 

  11. Muller, D., Quantin, B., Gesnel, M.C., Millon-Collard, R., Abecossis, J., Breathnach, R., Biochem. J., 253 (1988) 187.

    Google Scholar 

  12. Bode, W., Gomis-Rüth, F.X, Stöcher, W., FEBS Lett., 331 (1993) 134.

    Google Scholar 

  13. Stöcker, W., Grams, F., Baumann, U., Reinemer, P., Gomis-Rüth, F.X., Mckay, D.B., Bode, W., Protein Sci., 4 (1995) 823.

    Google Scholar 

  14. Whittaker, M., Floyd, C.D., Brown, P., Gearing, A.J.H., Chem. Rev., 99 (1999) 2735.

    Google Scholar 

  15. Spurlino, J.C., Smallwood, A.M., Carlton, D.D., Banks, T.M., Vavra, K.J., Johnson, J.S., Cook, E.R., Falvo, J., Wahl, R.C., Pulvino, T.A., Wendoloski, J.J., Smith, D.L., Proteins: Struct., Funct., and Genet., 19 (1994) 98.

    Google Scholar 

  16. Liotta, L.A., Steeg, P.S., Stetler-Stevenson, W.G., Cell, 64 (1991) 327.

    Google Scholar 

  17. Stetler-Stevenson, W.G., Aznavoorian, S., Liotta, L.A., Annu. Rev. Cell. Biol., 9 (1993) 541.

    Google Scholar 

  18. Beckett, R.P., Davidson, A.H., Drummond, A.H., Drug Discov. Today, 1 (1996) 16.

    Google Scholar 

  19. Dhanaraj, V.W., Ye, Q.Z., Molina, F., Johnson, L.L., Ortwine, D.F., Pavlovsky, A., Rubin, J.R., Skeean, R.W., White, A.D., Humblet, C., Hupe, D.J, Blundell, T.L., Croatica Chemica Acta, 72 (1999) 575.

    Google Scholar 

  20. Morgunova, E., Tuuttila, A., Bergmann, U. Isupov, M., Lindqvist, Y., Schneider, G., Tryggvason, K., Science, 284 (1999) 1667.

    Google Scholar 

  21. Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham, III, T.E., Ross, W.S., Simmerling, C.L., Darden, T.A., Merz, K.M., Stanton, R.V., Cheng, A.L., Vincent, J.J., Crowley, M., Tsui, V., Radmer, R.J., Duan, Y., Pitera, J., Massova, I., Seibel, G.L., Singh, U.C., Weiner, P.K., Kollman P.A. AMBER 6. University of California,San Francisco, 1999.

  22. MOPAC 7.0 User Guide, Quantum Chemistry Program Exchange (QCPE), Indiana University, USA, 1993.

  23. Gaussian 98 User Guide, Gaussian, Inc., Pittsburgh, USA, 1998.

  24. InsightII User Guide, Molecular simulations Inc., San Diego, USA, 1999.

  25. SYBYL, version 6.5, Tripos Associates: St. Louis, MO, USA, 1999.

  26. Poter, J.R., Beeley, N.R.A., Boyce, B.A., Bioorg. Med. Chem. Lett., 4 (1994) 2741.

    Google Scholar 

  27. Natchus, M.G., Cheng, M.Y., Wahl, C.T., Bioorg. Med. Chem. Lett., 8 (1998) 2077.

    Google Scholar 

  28. Hoops, S.C., Anderson, K.W., Merz, K.M., Jr., J. Am. Chem. Soc., 113 (1991) 8262.

    Google Scholar 

  29. Ryde, U., Proteins: Struct., Funct., and Genet, 21 (1995) 40.

    Google Scholar 

  30. Toba, S., Damodaran, K.V., Merz, K.M. Jr., J. Med. Chem., 42 (1999) 1225.

    Google Scholar 

  31. Wang, J.M., Cieplak, P., Kollman, P.A., J. Comput. Chem., 21 (2000) 1049.

    Google Scholar 

  32. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A., J. Am. Chem. Soc., 117 (1995) 5179.

    Google Scholar 

  33. Hou, T.J., Zhang, W., Xu, X.J.J., Phys. Chem., 105 (2001) 5304.

    Google Scholar 

  34. Cleplak, P., Cornell, W.D., Bayly, C., Kollman, P.A., J. Comput. Chem., 16 (1994) 1357.

    Google Scholar 

  35. Keil, M., Exner, T., Brickmann, J., J. Mol. Model., 4 (1998) 335

    Google Scholar 

  36. Lee, B., Richards, F.M., J. Mol. Biol., 55 (1971) 379.

    Google Scholar 

  37. Hou, T.J., Wang, J.M., Chen L.R., Xu, X.J., Protein Eng., 12 (1999) 639.

    Google Scholar 

  38. Meng, E.C., Shoichet, B.K., Kuntz, I.D.J., Comput. Chem., 13 (1992) 505.

    Google Scholar 

  39. Kiyama, R., Tamura Y., Watanabe, F., Tsuzuki, H., Ohtani, M., Yodo, M., J. Med. Chem., 42 (1999) 1723.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, T., Zhang, W. & Xu, X. Molecular docking studies of a group of hydroxamate inhibitors with gelatinase-A by molecular dynamics. J Comput Aided Mol Des 16, 27–41 (2002). https://doi.org/10.1023/A:1016345810973

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016345810973

Navigation