Skip to main content
Log in

Realizations of quantum computing using optical manipulations of atoms

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

We present a tutorial review of realizations of quantum computing whichare based on optical manipulations of atoms. Other realizations arebriefly mentioned. The ion trap quantum computer is considered in moredetail as a classical realization of quantum logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alber G, Beth T, Horodecki M, Horodecki P, Horodecki R, Rötteler M, Weinfurter H, Werner R and Zeilinger A (2001) Quantum information-An introduction to Basic Theoretical Concepts and Experiments. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Barenco A (1995) Proc. R. Soc. Lond. A 449: 697.

    Google Scholar 

  • Brennen GK, Caves CM, Jessen PS and Deutsch IH (1999) Quantum Logic Gates in Optical Lattices. Phys. Rev. Lett. 82: 1060–1063

    Google Scholar 

  • Bouwmeester D, Ekert A and Zeilinger A (eds) (2000) The Physics of Quantum Information-Quantum Cryptography, Quantum Teleportation, Quantum Computation. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Brune M, Nussenzveig P, Schmidt-Kaler F, Bernardot F, Maali A, Raimond JM and Haroche S (1994) From Lamb shift to light shifts: Vacuum and subphoton cavity fields measured by atomic phase sensitive detection. Phys. Rev. Lett. 72: 3339–3342

    Google Scholar 

  • Cassettari D, Hessmo B, Folman R, Maier T and Schmiedmayer J (2000) Beam Splitter for Guided Atoms. Phys. Rev. Lett. 85: 5483–5487

    Google Scholar 

  • Chu S (1998) Nobel lecture: The manipulation of neutral particles. Rev. Mod. Phys. 70: 685–706

    Google Scholar 

  • Cirac JI and Zoller P (1995) Quantum Computations with Cold Trapped Ions. Phys. Rev. Lett. 74: 4091–4094

    Google Scholar 

  • Cohen-Tannoudji C (1998) Nobel lecture: Manipulating atoms with photons. Rev. Mod. Phys. 70: 707–719

    Google Scholar 

  • Dekker NH, Lee CS, Lorent V, Thywissen JH, Smith SP, Drndi M, Westervelt RM and Prentiss M (2000) Guiding Neutral Atoms on a Chip. Phys. Rev. Lett. 84: 1124–1127

    Google Scholar 

  • Duan L-M, Cirac JI and Zoller P (2001) GeometricManipulation of Trapped Ions for Quantum Computation. Science 292: 1695–1697

    Google Scholar 

  • Jaksch D, Briegel H-J, Cirac JI, Garnider CW and Zoller P (1999) Entanglement of Atoms via Cold Controlled Collisions. Phys. Rev. Lett. 82: 1975–1978

    Google Scholar 

  • Loss D and DiVincenzo DP (1998) Quantum computation with quantum dots. Phys. Rev. A 57: 120–126

    Google Scholar 

  • Mabuchi H, Armen M, Lev B, Loncar M, Vuckovic J, Kimble HJ, Preskill J, Roukes M, Scherer A and van Enk SJ (2001) Quantum networks based on cavity OED. pp. 1–6

  • Maklin Y, Schön G and Schnirman A (2001) Quantum-state engineering with Josephsonjunction devices. Rev. Mod. Phys. 73: 357–401

    Google Scholar 

  • Monroe C, Meekhof DM, King BE, Itano WM and Wineland DJ (1995) Demonstration of a Fundamental Quantum Logic Gate. Phys. Rev. Lett. 75: 4714–4717

    Google Scholar 

  • Nielsen MA and Chuang IL (2000) Quantum Computation and Quantum Information. Cambrige University Press, Cambridge

    Google Scholar 

  • Pellizzari T, Gardiner SA, Cirac JI and Zoller P (1995) Decoherence, Continuous Observation, and Quantum Computing: A Cavity QED Model. Phys. Rev. Lett. 75: 3788–3791

    Google Scholar 

  • Phillips WD (1998) Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70: 721–741

    Google Scholar 

  • Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J-M and Haroche S (2000) Science 288: 2024

    Google Scholar 

  • Sackett CA, Kieplinski D, King BE, Langer C, Meyre V, Myatt CJ, Rowe M, Turchette QA, Itano WM, Wineland DJ and Monroe C (2000) Experimental entanglement of four particles. Nature 404: 256–259

    Google Scholar 

  • Shor PW (1994) In: Goldwasser S (ed) Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, p 124. IEEE Computer Society Press, Los Alamitos, CA

    Google Scholar 

  • Sleator T and Weinfurter H. (1995) Realizable Universal Quantum Logic Gates. Phys. Rev. Lett. 74: 4087–4090

    Google Scholar 

  • Sorensen A, Duan L-M, Cirac JI and Zoller P (2001) Many-particle entanglement with Bose-Einstein condensates. Nature 406: 63–66

    Google Scholar 

  • Sorensen A and Molmer K (2000) Ion trap quantum computer with bichromatic light. Fortschr. Phys. 48: 811–821

    Google Scholar 

  • Steane A (1998) Quantum Computing. Rep. Prog. Phys. 61: 117–173

    Google Scholar 

  • Turchette QA, Hood CJ, Lange W, Mabuchi H and Kimble HJ (1995) Measurement of Conditional Phase Shifts for Quantum Logic. Phys. Rev. Lett. 75: 4710–4713

    Google Scholar 

  • Vandersypen LMK, Steffen M, Breyta G, Yannoni CS, Sherwood MH and Chuang IL (2001) Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance. Nature 414: 883–887

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Töormä, P. Realizations of quantum computing using optical manipulations of atoms. Natural Computing 1, 199–209 (2002). https://doi.org/10.1023/A:1016543713037

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016543713037

Navigation